QUESTION

Draw the expiry payoff diagrams for each of the following portfolios (ignore premium costs):

(a) Short one share, long two calls with exercise price K (this one is called a straddle);

(b) Long one call and one put, both with exercise price K (this is also a straddle);

(c) Long one call, and two puts, all with exercise price K (a strap);

(d) Long one put and two calls, all with exercise price K (a strip);

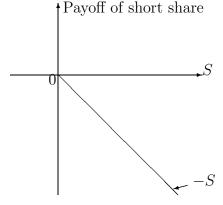
(e) Long one call with exercise price K_1 and one put with exercise price K_2 ; compare the three cases $K_1 > k_2$ (also a strangle), $k_1 = k_2$ and $k_1 < k_2$;

(f) As in (e), but also short one call and one put with exercise price K, where now $k_1 < K < k_2$ (a butterfly spread).

ANSWER

In what follows payoff is drawn for the owner of the portfolio and ignores premium.

(a) "Short" means you have a liability to but a share rather than being "long" which means you own it. Thus the payoff from a short share is

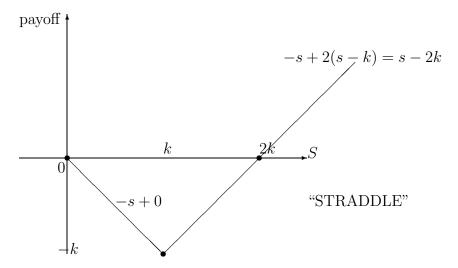


Payoff of a call to the owner is $= \max(s - k, 0)$

Thus payoff of 2 calls is $= 2 \times \max(s - k, 0)$

Thus the total payoff of portfolio is $= -s + 2 \max s - k$, 0

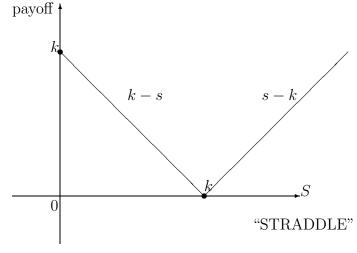
Graphically



(b) Long call payoff= $\max(s - k, 0)$

Long put payoff= $\max(k - s, o)$

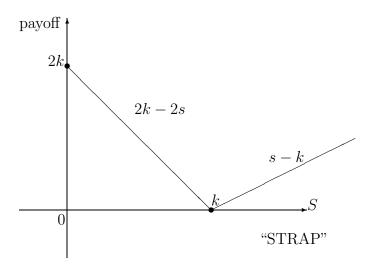
 $\mbox{Total payoff=} \max(s-k,0) + \max(k-s,0) = \left\{ \begin{array}{ll} k-s, & k \geq s \\ s-k, & k \leq s \end{array} \right. \mbox{Similar}$ shape to other "straddle" hence name.



(c) Long one call = $\max(s - k, 0)$

Long two puts= $2 \max(k - s, 0)$

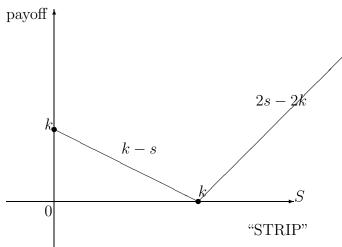
Total payoff= $\max(s-k,0) + 2\max(k-s,0) = \begin{cases} s-k, & s \ge k \\ 2(k-s), & s \le k \end{cases}$



(d) Long one put= $\max(k-s,0)$

Long two calls= $2 \max(s - k, 0)$

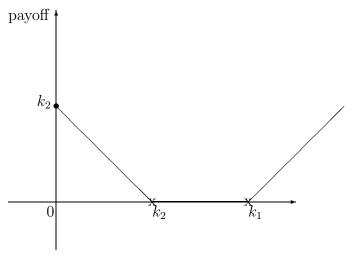
Total payoff= $\max(k-s,0) + 2\max(s-k,0) = \begin{cases} 2(s-k), & s \ge k \\ k-s, & s \le k \end{cases}$

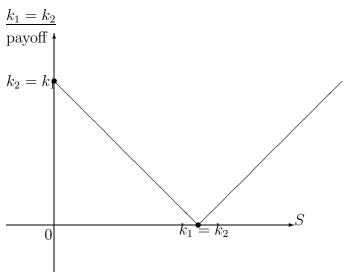


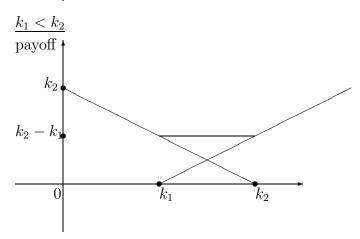
(e) Long one call, strike $k_1 = \max(s - k_1, 0)$

Long one put, strike $k_2 = \max(k_2 - s, 0)$

 $\underline{k_1 > k_2}$







(f) Short one call= $-\max(s-k,0)$

Short one put= $-\max(k-s,0), k_1 < k < k_2$

Long one call= $\max(s - k, 0)$

Long one put= $\max(k_2 - s, 0)$

Total payoff= $\max(k_2 - s, 0) + \max(s - k_1, 0) - \max(k - s, 0) - \max(s - k, 0)$

Split into several ranges

$$0 < s < k_1(< k < k_2) \Rightarrow -(k - s) + k_2 - s = k_2 - k$$

$$0 < k_1 < s < k < k_2 \Rightarrow -(k - s) + s - k_1 + k_2 - s = k_2 - k - k_1 + s$$

$$0 < k_1 < k < s < k_2 \Rightarrow -(s - k) + s - k_1 + k_2 - s = k_2 + k - k_1 - s$$

$$0 < k_1 < k < k_2 < s \Rightarrow -(s - k) + s - k_1 = k - k_1$$

Graphically:

