Question

Show that the transformation $w=\frac{1+z}{1-z}$ maps the unit disc $|z|<1$ conformally onto the half plane $u>0$, where $w=u+i v$. What is the image of the upper half of the unit disc?
Show that the transformation $w=\exp z$, where $z=x+i y$, maps the halfstrip $\Omega=\{(x, y): 0<y<\pi, x<0\}$ conformally onto the upper half of the unit disc. how do the boundaries of Ω map?
Find a transformation which maps Ω conformally onto the first quadrant. Hence, or otherwise, obtain a solution $T(x, y)$ of Laplace's equation in Ω which satisfies the boundary conditions
$T(x, 0)=T(x, \pi)=0 ; \quad T(0, y)=1$.

Answer

$w=\frac{1+z}{1-z}=\frac{1+e^{i \theta}}{1-e^{i \theta}}=\frac{e^{-i \frac{\theta}{2}}+e^{i \frac{\theta}{2}}}{e^{-i \frac{\theta}{2}}-e^{i \frac{\theta}{2}}}=\frac{\cos \frac{\theta}{2}}{-i \sin \frac{\theta}{2}}=i \cot \frac{\theta}{2}$
$\mathrm{S} 0|z|=1 \rightarrow$ imaginary axis.
Now $z=0 \rightarrow w=1$, so T maps D to U.
For the upper half of $D, 0<\theta<\pi$ on the boundary so $\cot \frac{\theta}{2}>0$ thus the semicircle maps to the positive imaginary axis.
Also $-1<z<1$ real $\Rightarrow w>0$ real.
So

DIAGRAM

$w=\exp z=e^{x} e^{i y}$
$y=0 \Rightarrow w=e^{x}$ real and <1 for $x<0$
$y=\pi \Rightarrow w=-e^{x}$ real and >-1 for $x<0$
$x=0, \quad 0<y<\pi \Rightarrow w=e^{i y}$
DIAGRAM
$w=\frac{1+e^{z}}{1-e^{z}}$ maps $\Omega \rightarrow$ first quadrant.

