Question

$(*)$ A wooden post is excavated from some ruins in the centre of Southampton and the University is asked to determine it's probable age. It is known that all living matter has a certain fraction of its carbon as Carbon 14 and the remaining fraction as Carbon 12. Once the matter has died the Carbon 14 decays radioactively to Carbon 12 at a rate proportional to the concentration of Carbon 14 and such that exactly half the Carbon 14 decays to Carbon 12 in 5568 years (called the half-life). Write down the ODE for the concentration of Carbon 14 in dead wood and determine the constants in this equation. Measurements on the post show that it has lost 22% of the amount of Carbon 14 that the living post would have. How old is the post?

Answer

Concentration of Carbon $14=C$, the decay is generated by $\frac{d C}{d t}=-k C$, and the solution is $C=A e^{-k t}$.
If $C=C_{0}$ at $\mathrm{t}=0$ then $\mathrm{C}=\frac{\mathrm{C}_{0}}{2}$ at $\mathrm{t}=5568$ years
$\Rightarrow A=C_{0} \Rightarrow \frac{C_{0}}{2}=C_{0} e^{-k(5568)}$
$\Rightarrow k=\frac{1}{5568} \ln 2 \approx 0.0001245$
For the age of the wooden post we need to find T where
$C=C_{0}$ at $\mathrm{t}=\mathrm{T}$, and $\mathrm{C}=(1-0.22) \mathrm{C}_{0}$ at $\mathrm{t}=2000$.
So $C=A e^{-\left(\frac{1}{5568} \ln 2\right) t}$
and $C_{0}=A e^{-\left(\frac{1}{5568} \ln 2\right) T}$ and $0.78 C_{0}=A e^{-\left(\frac{1}{(5568} \ln 2\right)(2000)}$
eliminating C_{0} and $A \Rightarrow 0.78=e^{\left(\frac{1}{5568} \ln 2\right)(T-2000)}$
$T=2000+5568 \frac{\ln 0.78}{\ln 2} \approx 4 \mathrm{AD}$.

