QUESTION

Let C_{R} denote the upper half of the circle $|z|=R,(R>2)$, taken in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z\right| \leq \frac{\pi R\left(2 R^{2}+1\right)}{\left(R^{2}-1\right)\left(R^{2}-4\right)}
$$

Then, by dividing the numerator and denominator of the expression on the right by R^{4}, show that the value of the integral tends to zero as R tends to infinity.
ANSWER
Length of contour is πR. Also,

$$
\left|\frac{2 z^{2}-1}{\left(z^{2}+1\right)\left(z^{2}+4\right)}\right| \leq\left|\frac{2|z|^{2} \mid+1}{\left(|z|^{2}-1\right)\left(|z|^{2}-4\right)}\right|=\left|\frac{2 R^{2}+1}{\left(R^{2}-1\right)\left(R^{2}-4\right)}\right|
$$

Now just apply the Estimation Theorem to get the result.

