QUESTION In a horticultural experiment three varieties of tomato plant are grown. The number n of plants of each variety and the yield x (in kg) of each plant are summarized in the table below

variety	n	$\sum x$	$\sum x^2$
Money - Maker(M)	8	95	1160
$\operatorname{Tigerella}(T)6$	92	1430	
Outdoor $\operatorname{Girl}(G)$	6	76	1000

Assuming that the yields of each variety are normally distributed about means μ_M, μ_T, μ_G respectively with common variance σ^2 .

- (i) Estimate σ^2 .
- (ii) Test the hypothesis $\mu_M = \mu_T = \mu_G$.
- (iii) Set up a 95% confidence interval for $\mu_M \mu_T$

ANSWER n = 20 T = 95 + 92 + 76 = 263 $c = \frac{263^2}{20} = 3458.45$ $\sum x^2 = 1160 + 1430 + 1000 = 3590$ TSS = 3590 - C = 131.55 $BSS = \frac{95^2}{8} + 92^26 + 76^26 - C = 3501.46 - C = 43.01$ WSS = 131.55 - 43.01 = 88.54

Source	df	\mathbf{SS}	ms
Between groups	2	43.01	21.505
Within groups	17	88.54	$5.208 = \hat{\sigma}^2(a)$
total	19	131.55	

- (ii) $H_0: \mu_M = \mu_T = \mu_G$ $H_1:$ Not all equal $\alpha = 5\%$ $F_{2,17} = \frac{21.505}{5.208} = 4.13$ significant at 5%
- (iii) $\overline{x}_m = \frac{95}{8} = 11.875 \ \overline{x}_T = 15.33 \ 95\% CI$
 - $\begin{array}{rrrr} -3.46 & \pm & t_{17}\sqrt{5.208(\frac{1}{8}+\frac{1}{6})}\\ -3.46 & \pm & 2.11\times1.2325\\ -3.46 & \pm & 2.60 \end{array}$