QUESTION In a horticultural experiment three varieties of tomato plant are grown. The number n of plants of each variety and the yield x (in kg) of each plant are summarized in the table below

variety	n	$\sum x$	$\sum x^{2}$
Money $-\operatorname{Maker}(\mathrm{M})$	8	95	1160
Tigerella $(T) 6$	92	1430	
Outdoor $\operatorname{Girl}(G)$	6	76	1000

Assuming that the yields of each variety are normally distributed about means $\mu_{M}, \mu_{T}, \mu_{G}$ respectively with common variance σ^{2}.
(i) Estimate σ^{2}.
(ii) Test the hypothesis $\mu_{M}=\mu_{T}=\mu_{G}$.
(iii) Set up a 95% confidence interval for $\mu_{M}-\mu_{T}$

ANSWER $n=20 \quad T=95+92+76=263 \quad c=\frac{263^{2}}{20}=3458.45$
$\sum x^{2}=1160+1430+1000=3590 \quad T S S=3590-C=131.55$
$B S S=\frac{95^{2}}{8}+92^{2} 6+76^{2} 6-C=3501.46-C=43.01$
$W S S=131.55-43.01=88.54$
(i)
anova Table

Source	df	ss	ms
Between groups	2	43.01	21.505
Within groups	17	88.54	$5.208=\hat{\sigma}^{2}(a)$
total	19	131.55	

(ii) $H_{0}: \mu_{M}=\mu_{T}=\mu_{G} \quad H_{1}$: Not all equal $\alpha=5 \%$

$$
F_{2,17}=\frac{21.505}{5.208}=4.13 \text { significant at } 5 \%
$$

(iii) $\bar{x}_{m}=\frac{95}{8}=11.875 \quad \bar{x}_{T}=15.3395 \% C I$

$$
\begin{aligned}
-3.46 & \pm t_{17} \sqrt{5.208\left(\frac{1}{8}+\frac{1}{6}\right)} \\
-3.46 & \pm 2.11 \times 1.2325 \\
-3.46 & \pm 2.60
\end{aligned}
$$

