QUESTION A random variable X has pdf $f(x)=(\beta+1) x^{\beta} \quad 0 \leq x \leq$ $1, \beta<-1$. A random sample of n values of $X, x_{1}, x_{2}, \ldots, x_{n}$ has been obtained.
(i) Find $E(X)$ and use the method of moments to estimate β.
(ii) Show that the likelihood function L is given by

$$
\ln L=n \ln (\beta+1)+\beta \sum \ln \left(x_{i}\right)
$$

and hence find the maximum estimate of β.
ANSWER $f(x)=(\beta+1) x^{\beta} \quad 0 \leq x \leq 1$
(i) $E(X)=\int_{0}^{1}(\beta+1) x x^{\beta} d x=\left[\frac{\beta+1}{\beta+2} x^{\beta+2}\right]_{0}^{1}=\frac{\beta+1}{\beta+2}$

Method of moments $\bar{x}=\frac{\hat{\beta}+1}{\hat{\beta}+2} \quad \bar{x}(\hat{\beta}+2)=\hat{\beta}+1 \quad \hat{\beta}=\frac{2 \bar{x}-1}{1-\bar{x}}$
(ii) $L=(\beta+1)^{n} \prod_{i=1}^{n} x_{1}^{\beta}$ $\ln L=n \ln (\beta+1)+\beta \sum_{i=1}^{n} \ln \left(x_{i}\right)$ $\frac{\partial \ln L}{\partial \beta}=\frac{n}{\beta+1}+\sum_{i=1}^{n} \ln \left(x_{i}\right)=0$ when $\hat{\beta}=\frac{-n}{\sum_{i=1}^{n} \ln \left(x_{i}\right)}-1$ (Check this is a maximum, $\frac{\partial^{2} \ln L}{\partial \beta^{2}}<0$

