Question

Use the given solution to find a second solution for each of the following differential equations:
a) $x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0$
$y_{1}(x)=x$
b) $\quad(x-1) y^{\prime \prime}-x y^{\prime}+y=0 \quad x>1 \quad y_{1}(x)=e^{x}$

Answer

Check that $y_{1}=x$ is a solution to the equation
This follows since $y_{1}^{\prime}=1$ and $y_{1}^{\prime \prime}=0$ and putting these into the equation makes it true.
Equation is in standard form with $p(x)=\frac{2}{x}$ and $q(x)=\frac{-2}{x^{2}}$. Use method of reduction of order with $y_{2}=v y_{1}$ where $v(x)=\int\left(\frac{1}{y_{1}^{2}(x)} e^{-\int p(x) d x}\right) d x$ so that $v(x)=\int\left(\frac{1}{x^{2}} e^{-\int \frac{2}{x} d x}\right) d x=\int\left(\frac{1}{x^{2}} e^{-2 \ln x}\right) d x=\int\left(\frac{1}{x^{2}} \frac{1}{x^{2}}\right) d x=$ $\frac{-1}{3 x^{3}}$
Hence the general solution is $y(x)=A x+\frac{B}{x^{2}}$

