Question

Use the given solution to find a second solution for each of the following differential equations:

a) $x^2y'' + 2xy' - 2y = 0$ $y_1(x) = x$ (*) b) (x-1)y'' - xy' + y = 0 x > 1 $y_1(x) = e^x$ (*)

Answer

Check that $y_1 = x$ is a solution to the equation This follows since $y'_1 = 1$ and $y''_1 = 0$ and putting these into the equation makes it true.

Equation is in standard form with $p(x) = \frac{2}{x}$ and $q(x) = \frac{-2}{x^2}$. Use method of reduction of order with $y_2 = vy_1$ where $v(x) = \int \left(\frac{1}{y_1^2(x)} e^{-\int p(x) dx}\right) dx$ so that $v(x) = \int \left(\frac{1}{x^2} e^{-\int \frac{2}{x} dx}\right) dx = \int \left(\frac{1}{x^2} e^{-2\ln x}\right) dx = \int \left(\frac{1}{x^2} \frac{1}{x^2}\right) dx = \frac{-1}{3x^3}$

Hence the general solution is $y(x) = Ax + \frac{B}{x^2}$