Question

A random walk has the infinite set $\{0,1,2, \ldots\}$ as possible states. State 0 is a partially reflecting barrier. If state 0 is occupied at step n then states 0 and 1 are equally likely to be occupied at step $n+1$ of the random walk. For all other states, transitions of $+1,-1,0$ take place with the probabilities $p, q, 1-p-q$ respectively. Let $p_{j, k}^{(n)}$ denote the probability that the random walk is in state k at step n, having started in state j. Derive the difference equation

$$
p_{j, k}^{(n)}=p \cdot p_{j, k-1}^{(n-1)}+q \cdot p_{j, k+1)}^{(n-1)}+(1-p-q) \cdot p_{j, k}^{(n-1)} \quad(k \geq 2)
$$

giving clear explanation of the reasoning leading to the equation. Write down analogous equations for $k=0$ and $k=1$. The long-term equilibrium distribution is given by

$$
\pi_{k}=\lim _{n \rightarrow \infty} p_{j, k}^{(n)} \quad(j=0,1,2, \ldots)
$$

when these limits exist. Obtain a set of difference equations for $\left(\pi_{k}\right)$. Solve these equations, recursively or otherwise, showing that if $p \geq q$ there is no solution, and finding explicit expressions for π_{k} in the case $p<q$. You may assume that $q \neq 0$.

Answer

Arguing conditionally on the last step gives

$$
\begin{aligned}
p_{j k}^{(n)} & =p p_{j, k-1}^{(n-1)}+q p_{j, k+1}^{(n-1)}+(1-p-q) p_{j, k}^{(n-1)} \\
p_{j 0}^{(n)} & =\frac{1}{2} p_{j 0}^{(n-1)}+q p_{j 1}^{(n-1)} \\
p_{j 1}^{(n)} & =\frac{1}{2} p_{j 0}^{(n-1)}+q p_{j, 2}^{(n-1)}+(1-p-q) p_{j, 1}^{(n-1)}
\end{aligned}
$$

Taking limits as $\mathrm{n} \rightarrow \infty$ gives

$$
\begin{aligned}
\pi_{k} & =p \pi_{k-1}+q \pi_{k+1}+(1-p-q) \pi_{k} \quad k \geq 2 \\
\pi_{0} & =\frac{1}{2} \pi_{0}+q \pi_{1} \\
\pi_{1} & =\frac{1}{2} \pi_{0}+q \pi_{2}+(1-p-q) \pi_{1}
\end{aligned}
$$

Rewriting these equations gives,

$$
\begin{align*}
q \pi_{1} & =\frac{1}{2} \pi_{0} \tag{1}\\
q \pi_{2}+(-p-q) \pi_{1}+\frac{1}{2} \pi_{0} & =0 \tag{2}\\
q \pi_{k+1}+(-p-q) \pi_{k}+p \pi_{k-1} & =0 \tag{3}
\end{align*}
$$

Using (1) in (2) gives $q \pi_{2}=p \pi_{1}$ Assuming that $q \pi_{k}=p \pi_{k-1}$ gives, using (3) $q \pi_{k+1}=p \pi_{k}$
Hence by induction this is true for $k \geq 1$
Thus $\pi_{k}=\left(\frac{p}{q}\right)^{k-1}=\frac{1}{2 q}\left(\frac{p}{q}\right)^{k-1} \pi_{0} \quad k \geq 1$
Now for $\left(\pi_{k}\right)$ to be a probability distribution, $\sum \pi_{k}=1$
i.e. $\left(1+\frac{1}{2 q} \sum_{k=1}^{\infty}\left(\frac{p}{q}\right)^{k-1}\right)=1$

If $p \geq q$ the series diverges, so there is no solution.
If $p<q$,

$$
\pi_{0}\left(1+\frac{1}{2 q} \frac{1}{\left(1-\frac{p}{q}\right)}\right)=1 ; \quad \pi_{0}\left(1+\frac{1}{2(q-p)}\right)=1
$$

So

$$
\pi_{0}=\frac{2(q-p)}{1+2(q-p)} \quad \text { and } \quad \pi_{k}=\frac{1}{2 q}\left(\frac{p}{q}\right)^{k-1} \cdot \frac{2(q-p)}{1+2(q-p)} \quad(k \geq 1)
$$

