Question

A gambler with initial capital $£ \mathrm{z}$ (where z is a positive integer) plays a coin tossing game against an infinity rich opponent. Two fair coins are tossed: if both show heads the gambler wins $£ 2$; if both show tails the gambler wins $£ 1$; otherwise the gambler loosed $£ 1$.

Letting q_{z} denote the probability the the gambler is eventuality ruined, show that

$$
q_{z+2}+q_{z+1}-4 q_{z}+2 q_{z-1}=0
$$

Find the general solution of this difference equation. Using the assumption that $q_{z} \rightarrow 0$ as $4 z \rightarrow \infty$, show that

$$
q_{z}=(\sqrt{3}-1)^{z} .
$$

What is the minimum initial capital the gambler needs in order that he has a better than even chance of not being ruined?

Suppose the gambler starts with $£ 1$. Considering the various possible outcomes, show that the probability of ruin in 5 or fewer steps is $\frac{78}{128}$

Answer

Let q_{z} denote the probability of ruin, with initial capitial £z. Arguing conditionally on the result of the first bet gives

$$
q_{z}=\frac{1}{4} \cdot q_{z+2}+\frac{1}{4} q_{z+1}+\frac{1}{2} q_{z-1}
$$

Rearranging this gives

$$
q_{z+2}+q_{z+1}-4 q_{z}+2 q_{z-1}=0
$$

To find the general solution put $q_{z}=\lambda^{z}$. This gives the auxillary equation

$$
\begin{aligned}
\lambda^{3}+\lambda^{2}-4 \lambda+2 & =0 \\
(\lambda-1)\left(\lambda^{+} 2 \lambda-2\right) & =0 \\
\text { So } \lambda & =1,-1-\sqrt{3},-1+\sqrt{3}
\end{aligned}
$$

Thus $q_{z}=A+B(-1-\sqrt{3})^{z}+C(-1+\sqrt{3})^{z}$
Now q_{z} is a probability and since $-1-\sqrt{3}<-1$ and $0<-1+\sqrt{3}<1$, we cannot have the righthand side between the) and 1 unless $\mathrm{B}=0$. Now
$(-1-\sqrt{3})^{z} \rightarrow 0$ as $z \rightarrow \infty$ and so assuming $q_{z} \rightarrow 0$ as $z \rightarrow \infty$ we conclude that $A=0$. Hence

$$
q_{z}=C(-1+\sqrt{3})^{z}
$$

and finally $q_{0}=1$ gives $C=1$.
Now in order to have $q_{z}<\frac{1}{2}$ we must have $(-1+\sqrt{3})^{z}<\frac{1}{2}$ i.e., $z \ln (-1+$ $\sqrt{3})<-\ln 2$ giving $z>\frac{-\ln 2}{\ln (-1+\sqrt{3})}=2.22 \ldots$ so $£ z \geq £ 3$.
Starting with $£ 1$, the paths leading to ruin in 5 or fewer steps are:

