Question

A gambler with initial capital $\pounds z$ (where z is a positive integer) plays a coin tossing game against an infinity rich opponent. Two fair coins are tossed: if both show heads the gambler wins $\pounds 2$; if both show tails the gambler wins $\pounds 1$; otherwise the gambler loosed $\pounds 1$.

Letting q_z denote the probability the the gambler is eventuality ruined, show that

$$q_{z+2} + q_{z+1} - 4q_z + 2q_{z-1} = 0$$

Find the general solution of this difference equation. Using the assumption that $q_z \to 0$ as $4z \to \infty$, show that

$$q_z = (\sqrt{3} - 1)^z.$$

What is the minimum initial capital the gambler needs in order that he has a better than even chance of not being ruined?

Suppose the gambler starts with £1. Considering the various possible outcomes, show that the probability of ruin in 5 or fewer steps is $\frac{78}{128}$

Answer

Let q_z denote the probability of ruin, with initial capitial £z. Arguing conditionally on the result of the first bet gives

$$q_z = \frac{1}{4} \cdot q_{z+2} + \frac{1}{4}q_{z+1} + \frac{1}{2}q_{z-1}$$

Rearranging this gives

$$q_{z+2} + q_{z+1} - 4q_z + 2q_{z-1} = 0$$

To find the general solution put $q_z = \lambda^z$. This gives the auxiliary equation

$$\lambda^{3} + \lambda^{2} - 4\lambda + 2 = 0$$

(\lambda - 1)(\lambda^{+}2\lambda - 2) = 0
So \lambda = 1, -1 - \sqrt{3}, -1 + \sqrt{3}

Thus $q_z = A + B(-1 - \sqrt{3})^z + C(-1 + \sqrt{3})^z$ Now q_z is a probability and since $-1 - \sqrt{3} < -1$ and $0 < -1 + \sqrt{3} < 1$, we cannot have the righthand side between the) and 1 unless B=0. Now $(-1-\sqrt{3})^z\to 0$ as $z\to\infty$ and so assuming $q_z\to 0$ as $z\to\infty$ we conclude that A=0. Hence

$$q_z = C(-1 + \sqrt{3})^z,$$

and finally $q_0 = 1$ gives C = 1.

Now in order to have $q_z < \frac{1}{2}$ we must have $(-1 + \sqrt{3})^z < \frac{1}{2}$ i.e., $z \ln(-1 + \sqrt{3}) < -\ln 2$ giving $z > \frac{-\ln 2}{\ln(-1 + \sqrt{3})} = 2.22...$ so $\pounds z \ge \pounds 3$. Starting with £1, the paths leading to ruin in 5 or fewer steps are: prob $\frac{1}{2}$ $1 {
m step}$ L IMPOSSIBLE 2 steps $\frac{\frac{1}{2^4}}{\frac{1}{2^5}}$ $\frac{1}{\frac{2^7}{2^7}}$ 3 steps W(1) L L $4 \text{ steps} \quad W(2) \perp L \perp L$ 5 steps W(1) W(1) L L LW(1) L W(1) L L So $p = \frac{1}{2^7}(648411) = \frac{78}{128}$ £ 3 2 1 $\mathbf{2}$ 3 1 4 5 steps