Question

A particle moves in a plane under the action of the force with potential U(r). Write the Lagrangain in terms of the polar coordinates (r, ϕ) and derive the equations of motion of the particle.

Answer

 $\mathbf{v} = \dot{r}\mathbf{e}_r + r\dot{\phi}\mathbf{e}_{\phi}$ Therefore $K.E. = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2)$ The Lagrangian $L = K.E. - P.E. = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2) - U(r)$ Equations of motion:

$$\frac{\partial L}{\partial r} = mr\dot{\phi}^2 - U'; \quad \frac{\partial L}{\partial \dot{r}} = m\dot{r}; \quad \frac{\partial L}{\partial \phi} = 0; \quad \frac{\partial L}{\partial \dot{\phi}} = mr^2\dot{\phi}.$$

Therefore

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}} \right) - \frac{\partial L}{\partial r} = 0 \Rightarrow m[\ddot{r} - r\dot{\phi}^2] = -U'$$
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) - \frac{\partial L}{\partial \phi} = 0 \Rightarrow \frac{d}{dt} (mr^2 \dot{\phi}) = 0 \Rightarrow r^2 \dot{\phi} = \text{constant}$$

Note that these are just the radial and tangential components of Newton's 2nd law in polar coordinates.