Sketch each of the plane curves γ given by the following parametrizations:
(i) $\gamma(t)=\left(t, e^{t}\right)$
(iv) $\quad \gamma(t)=(t-\sin t, 1+\cos t)$
(ii) $\gamma(t)=\left(t^{3}, t^{4}\right)$
(v) $\quad \gamma(t)=\left(e^{k t} \cos t, e^{k t} \sin t\right) \quad(k \neq 0)$
(iii) $\quad \gamma(t)=\left(t-t^{2}, t+t^{2}\right)$
(vi) $\quad \gamma(t)=\left(t^{2}-1, t^{3}-t\right)$

Answer
(i)

$$
\begin{aligned}
K(t) & =e^{t}\left(1+e^{2 t}\right)^{-\frac{3}{2}}>0 \\
K^{\prime}(t) & =e^{t}\left(1+2^{t}\right)^{-\frac{5}{2}} \cdot\left(1-2 e^{2 t}\right)
\end{aligned}
$$

So $K^{\prime}=0$ where $e^{2 t}=\frac{1}{2}$.
(ii) $K(t)=12 t^{-}\left(9+16 t^{2}\right)^{-\frac{3}{2}}$, defined for all $t \neq 0$. (Note also $\left.\gamma^{\prime}(0)=0\right)$.

$$
\left.\begin{array}{rllll}
|K| & \rightarrow \infty & \text { as } & t & \rightarrow 0 \\
& \rightarrow 0 & \text { as } & t \rightarrow \infty
\end{array}\right\}
$$

No vertices

At origin, deceptive@ $\gamma(t)$ slows to instantaneous halt.

$$
\frac{d y}{d x} \text { exists here }(=0), \text { but } \frac{d^{2} y}{d x^{2}} \text { doesn't. }
$$

(iii) $x+y=2 t,-x+y=2 t^{2}$, so rotation by 45 degrees shows curve is a parabola.

$K(t)=4\left(2+8 t^{2}\right)^{-\frac{3}{2}}$, max when $t=0$.
(iv) This is a cycloid: take standard cycloid (for circle of radius 1), reflect in the x-axis and translate by 2 in the y-direction.

$\gamma^{\prime}(t)=(1-\cos t,-\sin t)$, which is zero when $t=2 n \pi(n=0, \pm 1, \pm 2, \cdots)$.

$$
\begin{aligned}
K(t)= & -\frac{(1-c) \cdot c+s s}{\left((1-c)^{2}+s^{2}\right)^{3 / 2}} \\
= & \frac{1-c}{(2-2 c)^{\frac{3}{2}}} \\
= & 2^{-\frac{3}{2}}(1-c)^{-\frac{1}{2}} \\
& \quad \text { where } c=\cos t(\neq 1) \\
& \quad \text { and } s=\sin t \\
= & 1 / 4 \sin \frac{t}{2}
\end{aligned}
$$

defined except when $t=2 n \pi,(n \in \mathbf{Z})$.
So $k>0$, and as t goes from 0 to 2π we see K increases to $\frac{1}{4}$ (at $t=\pi$), then increases again.
(v) $K(t)=e^{-k t}\left(1+K^{2}\right)^{-\frac{1}{2}}$.
$\rightarrow 0 \quad$ as $\quad t \rightarrow+\infty$
$\rightarrow 0 \infty \quad$ as $\quad t \rightarrow-\infty$, i.e. as $\gamma(t) \rightarrow(0,0)$

Spiral - radius increases exponentially.
(vi)

$y(t)$ goes

While $x(t)$ goes

If $t \rightarrow-t$, then $x \rightarrow x$ and $y \rightarrow-y$.

$K(t)=\left(6 t^{2}+2\right)\left(9 t^{4}-2 t^{2}+1\right)^{-\frac{3}{2}},>0$
defined for all $t \in \Re$ since $9 u^{2}-2 u+1$ has no real roots.
$K^{\prime}(t)=-24 t\left(9 t^{4}+4 t^{2}-1\right)\left(9 t^{4}-2 t^{2}+1\right)^{-\frac{5}{2}},=0$ when $t=0$ or $t^{2}=\frac{1}{9}\left(-2+\frac{13}{)}\right.$.

