## Question

(*) A tank contains a well-stirred solution of 5 kg salt and 500 L of water. Starting at $t=0$, fresh water is poured into the well-stirred solution at a rate of $4 \mathrm{~L} / \mathrm{min}$, and the mixture leaves at the same rate.

1. What is the differential equation governing the amount $x(t)$ of salt in the tank at time $t$ ?
2. How long will it take for the concentration of salt to reach a level of $0.1 \%$ ?
3. The next day the procedure is repeated but the exit pipe has become partially blocked so that the mixture only leaves at a rate of $2 \mathrm{~L} / \mathrm{min}$. The capacity of the tank is 1000 L , what is the concentration of the mixture when it first overflows?

## Answer

a) $V(t)=$ volume of water in tank in Litres. $\quad V(0)=500$
$S(t)=$ mass of solution in tank in kg.
$S(0)=5$
Now balance the water:
rate of change $=$ rate of water in - rate of water out of volume

$$
\begin{array}{lllll}
\frac{d V}{d t} & = & 4 & - & 4
\end{array}
$$

$\Rightarrow \frac{d V}{d t}=0 \Rightarrow V(t)=500$
Now balance the salt:
rate of change $=$ rate of salt in - rate of salt out of salt $\begin{array}{lllll}\frac{d S}{d t} & = & 0 & - & 4\left(\frac{S}{V}\right)\end{array}$
(no salt is coming in and the concentration in the $\operatorname{tank}$ is $\frac{S}{V}$ ).
$\frac{d S}{d t}=-\frac{4 S}{500} \Rightarrow S=5 e^{\left(-\frac{4 t}{500}\right)}$
b) The concentration of salt gets to $0.1 \%$ of initial value when
$S=0.005$ i.e. $0.005=5 e^{-\frac{4 t}{500}} \Rightarrow t=863$ minutes $\approx 14$ hours
c) Water balance is:

$$
\frac{d V}{d t}=4-2 \Rightarrow \frac{d V}{d t}=2 \Rightarrow V(t)=500+2 t
$$

hence it overflows at $t=250$ mins
Salt balance is:
$\frac{d S}{d t}=-\frac{2 S}{V} \Rightarrow \frac{d S}{d t}=-\frac{2 S}{500+2 t}$ solve by separation of variables.
$\int \frac{1}{S} d S=\int \frac{-2}{500+2 t} d t \Rightarrow \ln S=-\ln (500+2 t)+A$
$S(0)=5$ then gives $\ln \mathrm{S}=-\ln (500+2 \mathrm{t})+\ln (500)+\ln (5)$
$S(t)=5\left(\frac{500}{500+2 t}\right)$
concentration $=\frac{S(t)}{V(t)}=5\left(\frac{500}{500+2 t}\right)\left(\frac{1}{500+2 t}\right)$
and at $\mathrm{t}=250 \mathrm{mins}$ (at overflow) $\frac{S}{V}=2.5 * 10^{-3} \mathrm{~kg} / \mathrm{L}$

