FUNCTIONAL ANALYSIS INTEGRATION-FUNCTIONAL APPROACH

The starting-point is a vector lattice L of functions defined on a space X.
We have a functional I defined on L with the following properties
(i) $I: L \rightarrow R$
(ii) I is linear on L
(iii) $f \geq 0 \Rightarrow I(f) \geq 0$
(iv) If $f_{n} \downarrow 0 I\left(f_{n}\right) \rightarrow 0$
we now extend I to a wider class of functions $U=\left\{g: X \rightarrow \bar{R}: f_{n} \uparrow g\right.$ for some sequence.\}
Suppose $f_{n} \uparrow g$ and $g_{n} \uparrow g$ where $\left\{f_{b}\right\}\left\{g_{n}\right\} \in L$.
For every n_{0}
$f_{n} \geq f_{n} \wedge g_{n_{0}} \uparrow g_{n_{0}}$ as $n \rightarrow \infty$ therefore

$$
I\left(g_{n_{0}}\right)=\lim I\left(f_{n} \wedge g_{n_{0}}\right) \leq I\left(f_{n}\right)
$$

Hence $\lim I\left(g_{n}\right) \leq \lim I\left(f_{n}\right)$.
Similarly $\lim I\left(g_{n}\right) \geq \lim I\left(f_{n}\right)$. Therefore

$$
\lim I\left(g_{n}\right)=\lim I\left(f_{n}\right)==^{d f} I_{h}
$$

U is no longer a vector lattice, but it has the following properties:
(i) $f, g \in U \Rightarrow f+g \in U$
(ii) $f \in U c \geq 0 \Rightarrow c f \in U$
(iii) $f, g \in U \Rightarrow f \vee g f \wedge g \in U$.

We have the following results.
If $g_{n} \geq 0$ and $g_{n} \subset U$ and if $\sum g_{n}=g$ then $g \subset U$ and $I(g)=\sum I g_{n}$, for $g \geq 0 g \subset U \Leftrightarrow \exists\left\{f_{n}\right\} \subset L$ such that $f_{n} \geq 0$ and $g=\sum_{1}^{\infty} f_{n}$. In this case $I(g)=\sum I f_{n}$.
If $g_{n} \geq 0$ and $g_{n} \subset U$ and if $g=\lim g_{n}$ then $g \subset U$ and $I(g)=\lim I\left(g_{n}\right)$.
We now extend the definition of I to a different class of functions.
Define

$$
\begin{aligned}
\bar{I}(h) & =\inf \{I(g) g \in U g \geq h\} \\
\underline{I}(h) & =-\bar{I}(-h)
\end{aligned}
$$

(i) $\bar{I}(f+g) \leq \bar{I}(f)+\bar{I}(g)$
(ii) $\bar{I}(c f)=c \bar{I}(f) c \geq 0$
(iii) $f \leq g \Rightarrow \bar{I}(f) \leq \bar{I}(g)$ and $\underline{I}(f) \leq \underline{I}(g)$
(iv) $\underline{I}(f) \leq \bar{I}(f)$,
for $0=\bar{I}(0)=\bar{I}(f-f) \leq \bar{I}(f)+\bar{I}(-f)$ therefore $I(f)=-\bar{I}(-f) \leq$ $\bar{I}(f)$.

Theorem If $f \in U \underline{I}(f)=\bar{I}(f)=I(f)$.
Proof If $f \in U$ clearly $\bar{I}(f)=I(f)$.
$\exists\left\{f_{n}\right\} \subset L$ such that $f_{n} \uparrow f$ therfore $-f_{n} \downarrow-f$

$$
\begin{aligned}
I(f) & =\lim I\left(f_{n}\right) \\
-I(f) & =\lim I\left(-f_{n}\right) \geq \bar{I}(-f)=-\underline{I}(f)
\end{aligned}
$$

therefore $\underline{I}(f) \geq I(f)$

Hence the result.
Theorem If f_{n} is a sequence of non-negative functions and $f=\sum f_{n}$

$$
\bar{I}(f) \leq \sum \bar{I}\left(f_{n}\right)
$$

Proof Suppose without loss of generality $\sum \bar{I}\left(f_{n}\right)<\infty$.
Given $\varepsilon>0$, for each n we can find $g_{n} \in U$ such that $g_{n} \geq f_{n}$ and $I\left(g_{n}\right)<\bar{I}\left(f_{n}\right)+\frac{\varepsilon}{2^{n}}$.
If $g=\sum g_{n}, g \in U g \geq f$ so

$$
\begin{aligned}
I(g) & \leq \sum \bar{I}\left(f_{n}\right)+\varepsilon \\
\text { therefore } \bar{I}(f) & \leq \sum \bar{I}\left(f_{n}\right)+\varepsilon \\
\text { therefore } \bar{I}(f) & \leq \sum \bar{I}\left(f_{n}\right)
\end{aligned}
$$

Define $L^{\prime}=\{f: \bar{I}(f)=\underline{I}(f)<\infty\}$.
L^{\prime} contains all functions of U on which I is finite. $L^{\prime} \subset L$.
If $f \in L^{\prime}$ define $I(f)=\bar{I}(f)=\underline{I}(f)$.
L^{\prime} is a vector lattice.
Let $\circ=+\wedge$ or \vee.
Let $f, g \in L^{\prime}, \varepsilon>0$
$\exists f_{1} f_{2}: f_{1} \in U f_{2} \in-U f_{2} \leq f \leq f_{1}$ and $I\left(f_{1}\right)+I\left(-f_{2}\right)<\varepsilon$.
$\exists g_{1} g_{2}: g_{1} \in U g_{2} \in-U g_{2} \leq g \leq g_{1}$, and $I\left(g_{1}\right)+I\left(-g_{2}\right)<\varepsilon$

$$
\begin{aligned}
& f_{2} \circ g \leq f \circ g \leq f_{1} \circ g f_{1} \circ g_{1} \in U f_{2} \circ g_{2} \in-U \\
& I\left(f_{1} \circ g_{1}\right)+I\left(-f_{2} \circ g_{2}\right) \leq I\left(f_{1}-f_{2}\right)+I\left(g_{1}-g_{2}\right)<2 \varepsilon
\end{aligned}
$$

Therefore $f \circ g \in L^{\prime}$
Scalar multiplication is trivial.
Theorem If $\left\{f_{n}\right\}$ is an increasing sequence of functions in L^{\prime}, if $\lim I\left(f_{n}\right)<$ ∞ and if $=\lim f_{n}$ then $f \in L^{\prime}$ and $I(f)=\lim \left(f_{n}\right)$.

Proof We may suppose that $f_{1}=0 f=\sum_{1}^{\infty}\left(f_{n+1}-f_{n}\right)$ therefore

$$
\bar{I}(f) \leq \sum_{1}^{\infty} I\left(f_{n+1}-f_{n}\right)=\lim I\left(f_{n}\right)
$$

Since $f \geq f_{n}$ for every n

$$
\underline{I}(f) \geq \underline{I}\left(f_{n}\right)=I\left(f_{n}\right)
$$

Therefore $\underline{I}(f) \geq \lim I\left(f_{n}\right)$ hence the result.
Theorem (Fatou's Lemma) Let f_{n} be a sequence of non-negative integrable $\left(\in L_{1}\right)$ functions. Then $\inf f_{n} \in L^{\prime}$. If $\underline{\lim } I\left(f_{n}\right)<\infty$ then $\underline{\lim } f_{n} \in L^{\prime}$ and

$$
I\left(\underline{\lim } f_{n}\right) \leq \underline{\lim } I\left(f_{n}\right)
$$

Proof Define $g_{n}=f_{1} \wedge f_{2} \wedge \ldots \wedge f_{n}$
$g_{n} \in L^{\prime}$ and $g_{n} \downarrow \inf f_{n}$ therefore $-g_{n} \uparrow-\inf f_{n}$ therefore $-\inf f_{n} \in L^{\prime}$ therefore $\inf f_{n} \in L^{\prime}$.
Define $h+n=\inf _{r \geq n} f_{r} \quad h_{n} \in L^{\prime}$
$h_{n} \uparrow \underline{\lim } f_{n}$ therefore provided $\underline{\lim } I\left(f_{n}\right)<\infty \underline{\lim } f_{n} \in L^{\prime}$

$$
\begin{aligned}
I\left(h_{n}\right) & \leq I\left(f_{r}\right) r \geq n \\
\text { therefore } I\left(h_{n}\right) & \leq \underline{\lim I\left(f_{n}\right)} \\
\text { therefore } I\left(\underline{\lim } h_{n}\right) & \leq \underline{\lim } I\left(f_{n}\right)
\end{aligned}
$$

Theorem (Dominated Convergence) If $\left\{f_{n}\right\}$ is a sequence of integrable functions such that $\left|f_{n}\right| \leq g$ for some $g \in L^{\prime}$, for every n and if $f_{n} \rightarrow f$ as $n \rightarrow \infty$ then $f \in L^{\prime}$ and $I\left(f_{n}\right) \rightarrow I(f)$ as $n \rightarrow \infty$.

Proof $o \leq g+f_{n} \leq 2 g$ therefore applying Fatou's Lemma to this sequence

$$
\begin{aligned}
I\left(\underline{\lim } \mid g+f_{n}\right) & \leq \underline{\lim } I\left(g+f_{n}\right) \\
\text { therefore } I(g+f) & \leq I(g)+\underline{\lim } I\left(f_{n}\right) f \in L^{\prime} \\
\text { therefore } I(f) & \leq \underline{\lim } I\left(f_{n}\right) \\
\text { therefore } I(-f) & \leq \underline{\lim I\left(-f_{n}\right)} \\
& =-\overline{\lim } I\left(f_{n}\right) \\
\text { therefore } I(f) & \geq \overline{\lim } I\left(f_{n}\right)
\end{aligned}
$$

Hence the result.
this approach ties up with the measure approach in the following sort of way.
$f \geq 0 f: X \rightarrow R . f$ is said to be measurable if $f \wedge g \in L^{\prime}$ for every $g \in L^{\prime}$.
The measurable functions constitute a vector lattice in which $\lim f_{n}$ is measurable. A subset Y of x is called a measurable set if X_{Y} is a measurable function. The measurable sets constitute a σ-algebra of sets. If we assume that $f \wedge 1 \in L^{\prime}$ then $\{x: f(x)>a\}$ is measurable. If we define $\mu(Y)=I\left(X_{Y}\right)$ then for $f \in L^{\prime} \quad \int f d \mu=I(f)$.

