FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM

- If M is a linear subspace of a normal linear space X and if F is a bounded linear functional on M then F can be extended to $M + [x_0]$ without changing its norm.
- **Proof** We first suppose that X is a vector space over the real numbers. We may suppose without loss of generality ||F|| = 1. We may define $F(x_0) = \alpha$ and $F(m + \lambda x_0) = F(m) + \lambda \alpha \ m \in M$.

We must have

$$|F(m) + \lambda \alpha| \le ||m + \lambda x_0||$$

i.e. $|F(m) + \alpha| \le ||m + x_0||(m \text{ arbitrary} \Rightarrow \frac{m}{\lambda} \text{ arbitrary})$

If $m_1 m_2 \in M$

$$F(m_1) + \alpha \leq ||m_1 + x_0||$$

$$F(m_2) + \alpha \geq -||m_2 + x_0||$$

$$-F(m_2) - ||m_2 - x_0|| \leq \alpha \leq -F(m_1) + ||m_1 + x_0|| - (I)$$

$$F(m_1) - F(m_2) = F(m_1 - m_2) \le ||m_1 - m_2|| \le ||m_1 + x_0|| + ||m_2 + x_0||$$

therefore $\exists \alpha \text{ satisfying (I)}$.

Now if $X = X(\mathcal{C})$

$$F(x) = G(g) + iH(x)$$

$$iF(x) = F(ix) = iG(x) - H(x) \text{ therefore } H(x) = -G(ix)$$

$$= G(ix) + iH(x) \text{ therefore}$$

$$F(x) = G(x) - iG(ix)$$

and G can be extended by the first part.

By Zorn's lemma there will be a maximal subspace N to which M can be extended and N = X, applying the theorem.

We can embed X in X^{**} as follows:

Let $x \in X$ and define $f(\lambda x) = \lambda ||x||$. Then ||f|| = 1.

f can be extended to the whole space without changing its norm.

$$\begin{split} |\tilde{x}(f)| &= |f(x)| = \|x| \\ \text{therefore } \|\tilde{x}\| \geq \|x\| \end{split}$$

Also $|\overline{x}(f)| = |f(x)| \le ||f|| ||x||$ therefore $||\overline{x}|| \le ||x||$.

Adjoint of an operator Let T be a continuous linear transformation from $X \to Y$.

The adjoint T^* of T is a linear transformation from Y^* to X^* defined as follows:

Let $f \in Y^*$.

We define $T^*(f) \in X^*$ by (T * f)x = f(TX)

$$|T^{*}(f)|| = \sup_{\|x\|=1} |fT(x)|$$

$$\leq ||f|| \sup_{\|x\|=1} ||Tx||$$

$$\leq ||F|| ||T||$$

Therefore T^* is continuous and $||T^*|| \le ||T||$.

Now T^{**} maps X^{**} to Y^{**} .

If X is regarded as a subspace of X^{**} then T^{**} is an extension of T therefore $||T|| \leq ||T^{**}|| \leq ||T^*||$ therefore $||T^*|| = ||T||$.

Weak topology Let X be a normed vector space and let X^* be the dual of X. We define a topology on X, called the weak topology, by taking the sets

$$V(x)_{f_1\dots f_n\varepsilon} = \{y \in X : |f_i(x) - f_i(y)| < \varepsilon \ i = 1,\dots,n\}$$

as a basis of neighbourhoods of the point x, where $f_1 \ldots f_n$ are any functionals in X^* and ε is any positive number.

As all the f are continuous this set will be open in the original topology and so this topology is weaker than the original one.

Example Let $\xi = (x_n) \in \ell^2$

Let $f = (y_n)$

$$f(\xi) = \sum x_n y_n = (\xi, \eta).$$

 $\xi_{\alpha} \to 0$ in the weak topology $\Leftrightarrow (|xi_{\alpha}, \eta) \to 0$. let $\varepsilon_1 = (1, 0, 0, ...) \varepsilon_2 = (0, 1, 0, ...)$ etc. $||\varepsilon_m - \varepsilon_n|| = \sqrt{2} \ m \neq n$. But for the weak topology this sequence converges to zero as $\varepsilon_n \ \eta) = y_n \to 0$ as $\sum |y_n|^2 < \infty$.

Example Consider the space of all real valued functions defined on [0 1].

Consider the topology given by $f_{\alpha} \to f \Leftrightarrow f_{\alpha}(x) \to f(x)$ for each x in [0 1].

Basic neighbourhoods:

Given $x_1 \ldots x_n$ and $\varepsilon > 0$

$$N = \{g : |f(x_i) - g(x_i)| < \varepsilon \ i = 1 \dots n$$

Let C be the subspace of continuous functions. Let $d(x) = \begin{cases} 1 & x \text{ irrational} \\ 0 & x \text{ rational} \end{cases}$ $d \in \overline{C}$ for this topology, for given $x_1 \dots x_n$ we can find $f \in C$ such that

$$f(x_i) = d(x_i) \ i = 1, \dots, n$$

and so $f \in N(d)$.

But no sequence of continuous functions converges to d in this topology for, given $\{f_n\} \in C$ and $f_n(x) \to d(x)$ at every x.

Let $H_n = \bigcap_{r \ge n} \{x : f_r(x) \ge \frac{1}{2}\}$. H_n is closed. H_n contains no rational and so is nowhere dense, therefore $\bigcup_{n=1}^{\infty} H_n$ is of the first category. But $\bigcup_{n=1}^{\infty} H_n$ = irrationals - of second category.

Theorem Suppose X is a Banach space, than the unit sphere of X^* is compact in the weak * topology.

Proof For each $x \in X$ define

$$C_x = \{z : |z| \le ||x||\}$$

 c_x is a compact set therefore $C = \prod_x C_x$ is compact.

 $\prod_{x \in X} C_x$ = set of all functions mapping X to the complex plane with the property that $|F(x)| \leq ||x||$. Hence the unit sphere of X^{*} can be regarded as a subspace and so will be compact as it is closed.

- **Theorem** If X is a Banach space, X is reflexive \Leftrightarrow its unit sphere is weakly compact.
- **Proof** If X is reflexive $X^{**} = X$ the weak topology of the unit sphere of X is the same as the weak * topology which is compact by th previous theorem.

Closed Graph Theorem T linear

Let $G(T) = \{(X, T(X)\} \subset X \times Y)$. If T is continuous G(T) is closed. The theorem states that the converse is true.

Lemma Let T be a bounded linear transformation of a Banach space X into a Banach sphere Y. If the image under T of the unit sphere $S_1 = S(0, 1)$ is dense in some sphere $U_r = S(0, r)$ about the origin of Y than it includes the whole of U_r .

Proof Let $\delta > 0$. We wish to define a sequence $\{y_n\}$ such that

$$y_{n+1} - y_n \in \delta^n S, \ \|y_{n+1} - \overline{y}\| < \delta^{n+1} r \tag{1}$$

We define $y_0 = 0$. Suppose that $y_0 \dots y_n$ have been defined.

Since $\overline{y} \in S(\overline{y}, \delta^{n+1}r) \cap (y_n + \delta^n U_r)$ this is a non-empty open subset of $y_n + \delta^n U_r$ therefore there is an element y_{n+1} of $y_n + \delta^n T(S_1)$ which belongs to this set, and y_{n+1} satisfies the conditions (1). $y_n \to \overline{y} \text{ as } n \to \infty \text{ provided } \delta < 1.$ $\exists x_n \text{ such that } x_n \in \delta^n S_1 \text{ and } T(x_n) = y_{n+1} - y_n.$ We can define $\overline{x} = \sum_{1}^{\infty} x_n \text{ provided } \delta < 1.$ Since T is bounded

$$T(\overline{X}) = \lim_{N \to \infty} \sum_{1}^{N} T(x_n)$$

$$= \lim_{N \to \infty} y_{N+1} = \overline{y}$$

$$\|\overline{x}\| \leq |sum\delta^n = \frac{1}{1-\delta} \text{ for all}\delta$$

therefore $\|\overline{x}\| \leq 1$
$$U_{r(1-\delta)} \subset T(S_1) \text{ for every } \delta$$

and $U_r = \bigcup_{\delta} U_{r(1-\delta)} \subset T(S_1)$

Proof of Theorem Let N(x) = ||x|| + ||T(x)||

If $\{x_n\}$ is a Cauchy sequence for the norm N then it is a Cauchy sequence for ||X|| and also $\{T(x_n)\}$ is a Cauchy sequence for $||T_x||$.

Therefore $x_n \to x$ and $Tx_n \to y$ as $n \to \infty$ as G(T) is closed $(x, y) \in G(T)$ therefore y = T(x).

$$N(x - x_n) = ||x - x_n|| + ||Tx - Tx_n|| \to 0 \text{ as } n \to \infty$$

Therefore X is a Banach space for the new norm N. Now the identity mapping from X with norm N to $(X, \| \|)$ is bounded since $\|X\| \leq N(x)$.

If S_1 denotes the unit sphere defined by N, it follows from Baire's category theorem that S_1 is dense in some sphere U_r about the origin defined by $\| \|$.

Thus by the lemma applied to the identity mapping $U_r \subset S_1$

- i.e. if $||X|| < r \Rightarrow N(x) < 1$
- i.e. $N(X) \leq \frac{1}{r} \|x\|$
- so $||T(x)|| \le N(x) \le \frac{1}{r} ||x||$ and so T is continuous.
- **Hilbert Space** A pre-Hilbert Space is a real or complex vector spade in which an inner product (x, y) is defined having the following properties.
 - (i) (x, x) > 0 unless x = 0

(ii) $(x, y) = \overline{(y, x)}$ (iii) (x + y, z) = (x, z) + (y, z)(iv) $\lambda x, y) = \lambda(x, y)$

A pre-Hilbert space can be normed by defining $||x|| = (x, x)^{\frac{1}{2}}$.

A Hilbert space is a pre-Hilbert space which is complete for this norm.

A Banach space is a Hilbert space

$$\Leftrightarrow ||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$

Schwarz inequality $|(x,y)| \le ||x|| ||Y||$

Proof

$$\begin{aligned} (\lambda x - y, \lambda x - y) &= |\lambda|^2 ||x||^2 - 2R\lambda(x, y) + ||y||^2 \\ 2R\lambda(x, y) &\leq |\lambda|^2 ||x||^2 + ||y||^2 \end{aligned}$$

Choose λ so that $|\lambda| = \frac{||Y||}{||X||}$ and $\arg \lambda = -\arg(x, y)$.

$$2\frac{\|Y\|}{\|X\|}|(x,y)| \le 2\|y\|^2$$

Hence the result.

Minkowski Inequality $||x + y|| \le ||x|| + ||y||$

Proof

$$\begin{aligned} |||x + y||^2| &= |(x + y, x + y)| \\ &= |||X||^2 + 2R(x, y) + ||y||^2| \\ &\leq ||x||^2 + ||Y||^2 + 2|(x, y)| \le (||x|| + ||Y||)^2 \end{aligned}$$

using Schwarz.

- **Theorem** A closed convex subset C of a Hilbert space contains a unique element of smallest norm.
- **Proof** Let $d = \inf\{||x|| : x \in C\}$.

Then $\exists \{x_n\} \subset C$ such that $||x_n|| \to d$. Since C is convex $\frac{x_n + x_m}{2} \in C$ therefore $||x_n + x_m|| \ge 2d$.

$$\begin{aligned} \|x_n - x_m\|^2 &= 2\|x_n\|^2 + 2\|x_m\|^2 - \|x_n + x_m\|^2 \\ &\leq 2\{\|x_n\|^2 - d^2\} + 2\{\|x_m\| - d^2\} < \varepsilon \end{aligned}$$

if n and m are sufficiently large.

Hence the sequence is a Cauchy sequence and has a limit point x which belongs to C as C is closed, and ||x|| = d.

If $y \in C$ and ||y|| = d then $||x + y|| \ge 2d = ||x|| + ||y||$ and so $y = \lambda x$ where $\lambda > 0 \Rightarrow ||y|| = \lambda ||x|| \Rightarrow \lambda = 1$ therefore x = y.

- **Theorem** Let M be a closed subspace of a Hilbert space \mathcal{H} . Then any $x = x_1 + x_2$ where $x_1 \in M$ and x_2 perpendicular M (i.e. $(x_2, y) = 0$ for all $y \in M$).
- **Proof** Suppose $x \in M$. Let x_2 be the element in the closed convex set x + M which is closest to 0.

Put $x_1 = x - x_2 \in M$.

If $y \in M$ then for any scalar λ

$$||x_2 + \lambda y||^2 \ge ||x_2||^2$$

Since $2R\overline{\lambda}(x_2, y) + |\lambda|^2 ||y||^2 \ge 0$ Put $\lambda = -\frac{(x_2 \ y)}{||y||^2}$. Then $-\frac{|(x_2 \ y)|^2}{||y||^2} \ge 0$ therefore $(x_2 \ y) = 0$. Suppose $x = x'_1 + x'_2 = x_1 + x_2$ therefore $x_1 - x'_1 = x'_2 - x_2 = 0$. Hence uniqueness. If M is closed $\mathcal{H} = M + M^{\perp}$ If M is closed and $x \in M^{\perp \perp}$

$$\begin{aligned} x &= x_1 + x_2 \ x_1 \in M \ x_2 \in M^{\perp} \\ (x \ x_2) &= (x_1 \ x_2) + (x_2 \ x_2) \end{aligned}$$

Therefore $(x_2 \ x_2) = 0$ therefore $x_2 = 0$ therefore $x \in M$.

Theorem Suppose \mathcal{H} is any Hilbert Space and let $f \in X^*$. Then there is an element $y \in H$ such that f(x) = (x, y) for every $x \in \mathcal{H}$.

Proof Let M = null space of f.

 $\exists y_0 \perp M \text{ such that if } x \in \mathcal{H}$

$$x = m + \lambda y_0 \ m \in M$$

$$f(x) = \lambda f(y_0)$$

$$(x, y_0) = \lambda ||y_0||^2$$

$$f(x) = \frac{(x, y_0)}{||y_0||^2} f(y_0) = \left(x, \frac{\overline{f(y_0)}}{||y_0||^2} y_0\right)$$

Write $y = \frac{\overline{f(y_0)}}{\|y_0\|^2} y_0$. If M is any closed subspace and $x \in \mathcal{H}$

$$\begin{aligned} x &= x_1 + x_2 \ x_1 \in M \ x_2 \in M^{\perp} \\ x_1 &= \operatorname{Proj}_M x \end{aligned}$$

If $T(x) = x_1 T$ is a linear operator from \mathcal{H} to itself, and ||T|| = 1.

$$TT' = T$$

(Tx, y) = (x₁ y) = (x₁ y₁)
(x, Ty) = (x y₁) = (x₁ y₁)

Therefore T is self-adjoint.

Theorem If M_1, \ldots, M_n are *n* mutually perpendicular closed subspaces of a Hilbert space \mathcal{H} and if $x \in \mathcal{H}$ and x_i, \ldots, x_n are the projections of *x* on M_1, \ldots, M_n respectively, then

$$\sum \|x_i\|^2 leq \|x\|^2$$

- **Proof** Put $M = M_1 + M_n x = x_1 + \ldots + x_n + y$, $y \in M^{\perp}$, then $||x||^2 = \sum ||x_1||^2 + ||y||^2$.
- **Theorem** Let $\{M_{\alpha}\}$ be a family, possibly uncountable, of pairwise orthogonal closed subspaces of \mathcal{H} , and let M be the closure of their direct sum.

If $x_{\alpha} = \operatorname{proj}_{M_{\alpha}} x \ x \in \mathcal{H}$ then $x_{\alpha} = 0$ except for a countable set of indices α_n .

 $\sum x_{\alpha_n}$ is convergent and its sum is the projection of x on M.

Proof

$$\sum_{i=1}^{r} \|x_{\beta_i}\| \le \|x\|^2$$

Hence for any *n* the number of indices satisfying $||x_{\alpha}|| \geq \frac{1}{n}$ is finite therefore the number of indices satisfying $||x_{\alpha}|| > 0$ is countable.

$$\sum_{1}^{N} \|x_{\alpha_n}\|^2 \le \|x\|^2 \text{ for each } N \text{ therefore } \sum_{1}^{\infty} \|x_{\alpha_n}\|^2 < +\infty$$

If $y_n = \sum_{1}^{N} x_{\alpha_n}$
$$\|y_n - y_m\|^2 \le \sum_{m+1}^{n} \|x_{\alpha_i}\|^2 < \varepsilon$$

if *m* is sufficiently large. Therefore $\{y_n\}$ is a Cauchy sequence which tends to a limit $y = \sum_{1}^{\infty} x_{\alpha_n}$ in *M*, as *M* is closed.

It remains to prove that $x - y \perp M$.

It is sufficient to prove that

$$w_{\beta_1} + w_{\beta_2} + \ldots + w_{\beta_r} \perp x - y$$

where $w_{\beta_i} \in M_{\beta_1}$ as the class of all such vectors is everywhere dense in M.

If β_1 as an α_n

$$\begin{aligned} (x - y, w_{\beta_1}) &= (x \ w_{\beta_1}) - (x_{\beta_1} \ w_{\beta_1}) \\ &= (x_{\beta_1} \ w_{\beta_1}) - (x_{\beta_1} \ w_{\beta_1}) = 0 \end{aligned}$$

If β_1 is not an α_n then $w_{\beta_1} \perp x$ and $\perp y$ and so to x - y.

Orthonormal vectors A set N of vectors in a Hilbert space \mathcal{H} is said to be orthonormal if ||x|| = 1 for every x in N, and (x, y) = 0 for all y in $N \neq x$.

An orthonormal set N of vectors is complete if $N^{\perp} = \{0\}$. Let M_x be the 1-dimensional subspace generated by x in N. If $y \in \mathcal{H}$

$$\operatorname{proj}_{M_x} y = \frac{(y \ x)}{\|x\|} \cdot x = (y, x) \cdot x$$

as ||x|| = 1 (y, x) = 0 except for a sequence $\{x_n\}|subset N$ and for this sequence

$$y = \sum (y x_n) x_n$$

 $||y||^2 = \sum |(y x_n)|^2$

This condition of completeness is equivalent to:

- (i) for any y in $\mathcal{H} y = \sum_{x \in N} (y x) x$
- (ii) for any y in $\mathcal{H} ||y||^2 = z \sum_{x \in N} |(y x)|^2$.