FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM

If M is a linear subspace of a normal linear space X and if F is a bounded linear functional on M then F can be extended to $M+\left[x_{0}\right]$ without changing its norm.

Proof We first suppose that X is a vector space over the real numbers. We may suppose without loss of generality $\|F\|=1$. We may define $F\left(x_{0}\right)=\alpha$ and $F\left(m+\lambda x_{0}\right)=F(m)+\lambda \alpha m \in M$.
We must have

$$
|F(m)+\lambda \alpha| \leq\left\|m+\lambda x_{0}\right\|
$$

i.e. $|F(m)+\alpha| \leq\left\|m+x_{0}\right\|\left(m\right.$ arbitrary $\Rightarrow \frac{m}{\lambda}$ arbitrary

If $m_{1} m_{2} \in M$

$$
\begin{aligned}
F\left(m_{1}\right)+\alpha & \leq\left\|m_{1}+x_{0}\right\| \\
F\left(m_{2}\right)+\alpha & \geq-\left\|m_{2}+x_{0}\right\| \\
-F\left(m_{2}\right)-\left\|m_{2}-x_{0}\right\| & \leq \alpha \leq-F\left(m_{1}\right)+\left\|m_{1}+x_{0}\right\|-(I) \\
F\left(m_{1}\right)-F\left(m_{2}\right) & =F\left(m_{1}-m_{2}\right) \leq\left\|m_{1}-m_{2}\right\| \\
& \leq\left\|m_{1}+x_{0}\right\|+\left\|m_{2}+x_{0}\right\|
\end{aligned}
$$

therefore $\exists \alpha$ satisfying (I).
Now if $X=X(\mathcal{C})$

$$
\begin{aligned}
F(x) & =G(g)+i H(x) \\
i F(x) & =F(i x)=i G(x)-H(x) \text { therefore } H(x)=-G(i x) \\
& =G(i x)+i H(x) \text { therefore } \\
F(x) & =G(x)-i G(i x)
\end{aligned}
$$

and G can be extended by the first part.

By Zorn's lemma there will be a maximal subspace N to which M can be extended and $N=X$, applying the theorem.
We can embed X in $X^{* *}$ as follows:
Let $x \in X$ and define $f(\lambda x)=\lambda\|x\|$. Then $\|f\|=1$.
f can be extended to the whole space without changing its norm.

$$
\begin{aligned}
& \qquad|\tilde{x}(f)|=|f(x)|=\|x\| \\
& \text { therefore }\|\tilde{x}\| \geq\|x\|
\end{aligned}
$$

Also $|\bar{x}(f)|=|f(x)| \leq\|f\|\|x\|$ therefore $\|\bar{x}\| \leq\|x\|$.
Adjoint of an operator Let T be a continuous linear transformation from $X \rightarrow Y$.

The adjoint T^{*} of T is a linear transformation from Y^{*} to X^{*} defined as follows:

Let $f \in Y^{*}$.
We define $T^{*}(f) \in X^{*}$ by $(T * f) x=f(T X)$

$$
\begin{aligned}
\left\|T^{*}(f)\right\| & =\sup _{\|x\|=1}|f T(x)| \\
& \leq\|f\| \sup _{\|x\|=1}\|T x\| \\
& \leq\|F\|\|T\|
\end{aligned}
$$

Therefore T^{*} is continuous and $\left\|T^{*}\right\| \leq\|T\|$.
Now $T^{* *}$ maps $X^{* *}$ to $Y^{* *}$.
If X is regarded as a subspace of $X^{* *}$ then $T^{* *}$ is an extension of T therefore $\|T\| \leq\left\|T^{* *}\right\| \leq\left\|T^{*}\right\|$ therefore $\left\|T^{*}\right\|=\|T\|$.

Weak topology Let X be a normed vector space and let X^{*} be the dual of X. We define a topology on X, called the weak topology, by taking the sets

$$
V(x)_{f_{1} \ldots f_{n} \varepsilon}=\left\{y \in X:\left|f_{i}(x)-f_{i}(y)\right|<\varepsilon i=1, \ldots, n\right\}
$$

as a basis of neighbourhoods of the point x, where $f_{1} \ldots f_{n}$ are any functionals in X^{*} and ε is any positive number.

As all the f are continuous this set will be open in the original topology and so this topology is weaker than the original one.

Example Let $\xi=\left(x_{n}\right) \in \ell^{2}$
Let $f=\left(y_{n}\right)$

$$
f(\xi)=\sum x_{n} y_{n}=(\xi, \eta)
$$

$\xi_{\alpha} \rightarrow 0$ in the weak topology $\Leftrightarrow\left(\mid x i_{\alpha}, \eta\right) \rightarrow 0$.
let $\varepsilon_{1}=(1,0,0, \ldots) \varepsilon_{2}=(0,1,0, \ldots)$ etc.
$\left\|\varepsilon_{m}-\varepsilon_{n}\right\|=\sqrt{2} m \neq n$. But for the weak topology this sequence converges to zero as $\left.\varepsilon_{n} \eta\right)=y_{n} \rightarrow 0$ as $\sum\left|y_{n}\right|^{2}<\infty$.

Example Consider the space of all real valued functions defined on $\left[\begin{array}{ll}0 & 1\end{array}\right]$.
Consider the topology given by $f_{\alpha} \rightarrow f \Leftrightarrow f_{\alpha}(x) \rightarrow f(x)$ for each x in [01].
Basic neighbourhoods:
Given $x_{1} \ldots x_{n}$ and $\varepsilon>0$

$$
N=\left\{g:\left|f\left(x_{i}\right)-g\left(x_{i}\right)\right|<\varepsilon i=1 \ldots n\right.
$$

Let C be the subspace of continuous functions. Let $d(x)= \begin{cases}1 & x \text { irrational } \\ 0 & x \text { rational }\end{cases}$ $d \in \bar{C}$ for this topology, for given $x_{1} \ldots x_{n}$ we can find $f \in C$ such that

$$
f\left(x_{i}\right)=d\left(x_{i}\right) i=1, \ldots, n
$$

and so $f \in N(d)$.
But no sequence of continuous functions converges to d in this topology for, given $\left\{f_{n}\right\} \in C$ and $f_{n}(x) \rightarrow d(x)$ at every x.
Let $H_{n}=\cap_{r \geq n}\left\{x: f_{r}(x) \geq \frac{1}{2}\right\} . H_{n}$ is closed. H_{n} contains no rational and so is nowhere dense, therefore $\cup_{n=1}^{\infty} H_{n}$ is of the first category. But $\cup_{n=1}^{\infty} H_{n}=$ irrationals - of second category.

Theorem Suppose X is a Banach space, than the unit sphere of X^{*} is compact in the weak $*$ topology.

Proof For each $x \in X$ define

$$
C_{x}=\{z:|z| \leq\|x\|\}
$$

c_{x} is a compact set therefore $C=\prod_{x} C_{x}$ is compact.
$\prod_{x \in X} C_{x}=$ set of all functions mapping X to the complex plane with the property that $|F(x)| \leq\|x\|$. Hence the unit sphere of X^{*} can be regarded as a subspace and so will be compact as it is closed.

Theorem If X is a Banach space, X is reflexive \Leftrightarrow its unit sphere is weakly compact.

Proof If X is reflexive $X^{* *}=X$ the weak topology of the unit sphere of X is the same as the weak $*$ topology which is compact by th previous theorem.

Closed Graph Theorem T linear

Let $G(T)=\{(X, T(X)\} \subset X \times Y$. If T is continuous $G(T)$ is closed. The theorem states that the converse is true.

Lemma Let T be a bounded linear transformation of a Banach space X into a Banach sphere Y. If the image under T of the unit sphere $S_{1}=S(0,1)$ is dense in some sphere $U_{r}=S(0, r)$ about the origin of Y than it includes the whole of U_{r}.

Proof Let $\delta>0$. We wish to define a sequence $\left\{y_{n}\right\}$ such that

$$
\begin{equation*}
y_{n+1}-y_{n} \in \delta^{n} S,\left\|y_{n+1}-\bar{y}\right\|<\delta^{n+1} r \tag{1}
\end{equation*}
$$

We define $y_{0}=0$. Suppose that $y_{0} \ldots y_{n}$ have been defined.
Since $\bar{y} \in S\left(\bar{y}, \delta^{n+1} r\right) \cap\left(y_{n}+\delta^{n} U_{r}\right)$ this is a non-empty open subset of $y_{n}+\delta^{n} U_{r}$ therefore there is an element y_{n+1} of $y_{n}+\delta^{n} T\left(S_{1}\right)$ which belongs to this set, and y_{n+1} satisfies the conditions (1).
$y_{n} \rightarrow \bar{y}$ as $n \rightarrow \infty$ provided $\delta<1$.
$\exists x_{n}$ such that $x_{n} \in \delta^{n} S_{1}$ and $T\left(x_{n}\right)=y_{n+1}-y_{n}$.
We can define $\bar{x}=\sum_{1}^{\infty} x_{n}$ provided $\delta<1$. Since T is bounded

$$
\begin{aligned}
T(\bar{X}) & =\lim _{N \rightarrow \infty} \sum_{1}^{N} T\left(x_{n}\right) \\
& =\lim _{N \rightarrow \infty} y_{N+1}=\bar{y} \\
\|\bar{x}\| & \leq \left\lvert\, s^{\prime} m \delta^{n}=\frac{1}{1-\delta}\right. \text { for all } \delta \\
\text { therefore }\|\bar{x}\| & \leq 1 \\
U_{r(1-\delta)} & \subset T\left(S_{1}\right) \text { for every } \delta \\
\text { and } U_{r} & =\cup_{\delta} U_{r(1-\delta} \subset T\left(S_{1}\right)
\end{aligned}
$$

Proof of Theorem Let $N(x)=\|x\|+\|T(x)\|$
If $\left\{x_{n}\right\}$ is a Cauchy sequence for the norm N then it is a Cauchy sequence for $\|X\|$ and also $\left\{T\left(x_{n}\right)\right\}$ is a Cauchy sequence for $\left\|T_{x}\right\|$.
Therefore $x_{n} \rightarrow x$ and $T x_{n} \rightarrow y$ as $n \rightarrow \infty$ as $G(T)$ is closed $(x, y) \in$ $G(T)$ therefore $y=T(x)$.

$$
N\left(x-x_{n}\right)=\left\|x-x_{n}\right\|+\left\|T x-T x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

Therefore X is a Banach space for the new norm N. Now the identity mapping from X with norm N to $(X,\| \|)$ is bounded since $\|X\| \leq$ $N(x)$.

If S_{1} denotes the unit sphere defined by N, it follows from Baire's category theorem that S_{1} is dense in some sphere U_{r} about the origin defined by $\|\|$.

Thus by the lemma applied to the identity mapping $U_{r} \subset S_{1}$
i.e. if $\|X\|<r \Rightarrow N(x)<1$
i.e. $N(X) \leq \frac{1}{r}\|x\|$
so $\|T(x)\| \leq N(x) \leq \frac{1}{r}\|x\|$ and so T is continuous.
Hilbert Space A pre-Hilbert Space is a real or complex vector spade in which an inner product (x, y) is defined having the following properties.
(i) $(x, x)>0$ unless $x=0$
(ii) $(x, y)=\overline{(y, x)}$
(iii) $(x+y, z)=(x, z)+(y, z)$
(iv) $\lambda x, y)=\lambda(x, y)$

A pre-Hilbert space can be normed by defining $\|x\|=(x, x)^{\frac{1}{2}}$.
A Hilbert space is a pre-Hilbert space which is complete for this norm.
A Banach space is a Hilbert space

$$
\Leftrightarrow\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

Schwarz inequality $|(x, y)| \leq\|x\|\|Y\|$

Proof

$$
\begin{aligned}
(\lambda x-y, \lambda x-y) & =|\lambda|^{2}\|x\|^{2}-2 R \lambda(x, y)+\|y\|^{2} \\
2 R \lambda(x, y) & \leq|\lambda|^{2}\|x\|^{2}+\|y\|^{2}
\end{aligned}
$$

Choose λ so that $|\lambda|=\frac{\|Y\|}{\|X\|}$ and $\arg \lambda=-\arg (x, y)$.

$$
2 \frac{\|Y\|}{\|X\|}|(x, y)| \leq 2\|y\|^{2}
$$

Hence the result.
Minkowski Inequality $\|x+y\| \leq\|x\|+\|y\|$

Proof

$$
\begin{aligned}
\left|\|x+y\|^{2}\right| & =|(x+y, x+y)| \\
& =\left|\|X\|^{2}+2 R(x, y)+\|y\|^{2}\right| \\
& \leq\|x\|^{2}+\|Y\|^{2}+2|(x, y)| \leq(\|x\|+\|Y\|)^{2}
\end{aligned}
$$

using Schwarz.
Theorem A closed convex subset C of a Hilbert space contains a unique element of smallest norm.

Proof Let $d=\inf \{\|x\|: x \in C\}$.
Then $\exists\left\{x_{n}\right\} \subset C$ such that $\left\|x_{n}\right\| \rightarrow d$. Since C is convex $\frac{x_{n}+x_{m}}{2} \in C$ therefore $\left\|x_{n}+x_{m}\right\| \geq 2 d$.

$$
\begin{aligned}
\left\|x_{n}-x_{m}\right\|^{2} & =2\left\|x_{n}\right\|^{2}+2\left\|x_{m}\right\|^{2}-\left\|x_{n}+x_{m}\right\|^{2} \\
& \leq 2\left\{\left\|x_{n}\right\|^{2}-d^{2}\right\}+2\left\{\left\|x_{m}\right\|-d^{2}\right\}<\varepsilon
\end{aligned}
$$

if n and m are sufficiently large.
Hence the sequence is a Cauchy sequence and has a limit point x which belongs to C as C is closed, and $\|x\|=d$.
If $y \in C$ and $\|y\|=d$ then $\|x+y\| \geq 2 d=\|x\|+\|y\|$ and so $y=\lambda x$ where $\lambda>0 \Rightarrow\|y\|=\lambda\|x\| \Rightarrow \lambda=1$ therefore $x=y$.

Theorem Let M be a closed subspace of a Hilbert space \mathcal{H}. Then any $x=x_{1}+x_{2}$ where $x_{1} \in M$ and x_{2} perpendicular M (i.e. $\left(x_{2}, y\right)=0$ for all $y \in M$).

Proof Suppose $x \in M$. Let x_{2} be the element in the closed convex set $x+M$ which is closest to 0 .

Put $x_{1}=x-x_{2} \in M$.
If $y \in M$ then for any scalor λ

$$
\left\|x_{2}+\lambda y\right\|^{2} \geq\left\|x_{2}\right\|^{2}
$$

Since $2 R \bar{\lambda}\left(x_{2}, y\right)+|\lambda|^{2}\|y\|^{2} \geq 0$
Put $\lambda=-\frac{\left(x_{2} y\right)}{\|y\|^{2}}$.
Then $-\frac{\mid\left(x_{2} y\right)^{2}}{\|y\|^{2}} \geq 0$ therefore $\left(x_{2} y\right)=0$.
Suppose $x=x_{1}^{\prime}+x_{2}^{\prime}=x_{1}+x_{2}$ therefore $x_{1}-x_{1}^{\prime}=x_{2}^{\prime}-x_{2}=0$.
Hence uniqueness.
If M is closed $\mathcal{H}=M+M^{\perp}$
If M is closed and $x \in M^{\perp \perp}$

$$
\begin{aligned}
x & =x_{1}+x_{2} \quad x_{1} \in M x_{2} \in M^{\perp} \\
\left(x x_{2}\right) & =\left(x_{1} x_{2}\right)+\left(x_{2} x_{2}\right)
\end{aligned}
$$

Therefore $\left(x_{2} x_{2}\right)=0$ therefore $x_{2}=0$ therefore $x \in M$.
Theorem Suppose \mathcal{H} is any Hilbert Space and let $f \in X^{*}$. Then there is an element $y \in H$ such that $f(x)=(x, y)$ for every $x \in \mathcal{H}$.

Proof Let $M=$ null space of f.
$\exists y_{0} \perp M$ such that if $x \in \mathcal{H}$

$$
\begin{aligned}
x & =m+\lambda y_{0} m \in M \\
f(x) & =\lambda f\left(y_{0}\right) \\
\left(x, y_{0}\right) & =\lambda\left\|y_{0}\right\|^{2} \\
f(x) & =\frac{\left(x, y_{0}\right)}{\left\|y_{0}\right\|^{2}} f\left(y_{0}\right)=\left(x, \frac{\overline{f\left(y_{0}\right)}}{\left\|y_{0}\right\|^{2}} y_{0}\right)
\end{aligned}
$$

Write $y=\frac{\overline{f\left(y_{0}\right)}}{\left\|y_{0}\right\|^{2}} y_{0}$.
If M is any closed subspace and $x \in \mathcal{H}$

$$
\begin{aligned}
x & =x_{1}+x_{2} x_{1} \in M x_{2} \in M^{\perp} \\
x_{1} & =\operatorname{Proj}_{M} x
\end{aligned}
$$

If $T(x)=x_{1} T$ is a linear operator from \mathcal{H} to itself, and $\|T\|=1$.

$$
\begin{aligned}
& T T^{\prime}=T \\
&(T x, y)=\left(\begin{array}{ll}
x_{1} y
\end{array}\right)=\left(\begin{array}{c}
x_{1} y_{1}
\end{array}\right) \\
&(x, T y)=\left(\begin{array}{ll}
x & y_{1}
\end{array}\right)=\left(\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right)
\end{aligned}
$$

Therefore T is self-adjoint.
Theorem If M_{1}, \ldots, M_{n} are n mutually perpendicular closed subspaces of a Hilbert space \mathcal{H} and if $x \in \mathcal{H}$ and x_{i}, \ldots, x_{n} are the projections of x on $M_{1}, \ldots M_{n}$ respectively, then

$$
\sum\left\|x_{i}\right\|^{2} l e q\|x\|^{2}
$$

Proof Put $M=M_{1}++M_{n} x=x_{1}+\ldots+x_{n}+y, y \in M^{\perp}$, then $\|x\|^{2}=$ $\sum\left\|x_{1}\right\|^{2}+\|y\|^{2}$.

Theorem Let $\left\{M_{\alpha}\right\}$ be a family, possibly uncountable, of pairwise orthogonal closed subspaces of \mathcal{H}, and let M be the closure of their direct sum.

If $x_{\alpha}=\operatorname{proj}_{M_{\alpha}} x x \in \mathcal{H}$ then $x_{\alpha}=0$ except for a countable set of indices α_{n}.
$\sum x_{\alpha_{n}}$ is convergent and its sum is the projection of x on M.
Proof

$$
\sum_{i=1}^{r}\left\|x_{\beta_{i}}\right\| \leq\|x\|^{2}
$$

Hence for any n the number of indices satisfying $\left\|x_{\alpha}\right\| \geq \frac{1}{n}$ is finite therefore the number of indices satisfying $\left\|x_{\alpha}\right\|>0$ is countable.
$\sum_{1}^{N}\left\|x_{\alpha_{n}}\right\|^{2} \leq\|x\|^{2}$ for each N therefore $\sum_{1}^{\infty}\left\|x_{\alpha_{n}}\right\|^{2}<+\infty$.
If $y_{n}=\sum_{1}^{N} x_{\alpha_{n}}$

$$
\left\|y_{n}-y_{m}\right\|^{2} \leq \sum_{m+1}^{n}\left\|x_{\alpha_{i}}\right\|^{2}<\varepsilon
$$

if m is sufficiently large. Therefore $\left\{y_{n}\right\}$ is a Cauchy sequence which tends to a limit $y=\sum_{1}^{\infty} x_{\alpha_{n}}$ in M, as M is closed.
It remains to prove that $x-y \perp M$.
It is sufficient to prove that

$$
w_{\beta_{1}}+w_{\beta_{2}}+\ldots+w_{\beta_{r}} \perp x-y
$$

where $w_{\beta_{i}} \in M_{\beta_{1}}$ as the class of all such vectors is everywhere dense in M.
If β_{1} as an α_{n}

$$
\begin{aligned}
\left(x-y, w_{\beta_{1}}\right) & =\left(x w_{\beta_{1}}\right)-\left(x_{\beta_{1}} w_{\beta_{1}}\right) \\
& =\left(x_{\beta_{1}} w_{\beta_{1}}\right)-\left(x_{\beta_{1}} w_{\beta_{1}}\right)=0
\end{aligned}
$$

If β_{1} is not an α_{n} then $w_{\beta_{1}} \perp x$ and $\perp y$ and so to $x-y$.
Orthonormal vectors A set N of vectors in a Hilbert space \mathcal{H} is said to be orthonormal if $\|x\|=1$ for every x in N, and $(x, y)=0$ for all y in $N \neq x$.

An orthonormal set N of vectors is conplete if $N^{\perp}=\{0\}$.
Let M_{x} be the 1-dimensional subspace generated by x in N.
If $y \in \mathcal{H}$

$$
\operatorname{proj}_{M_{x}} y=\frac{(y x)}{\|x\|} \cdot x=(y, x) \cdot x
$$

as $\|x\|=1(y, x)=0$ except for a sequence $\left\{x_{n}\right\} \mid \operatorname{subset} N$ and for this sequence

$$
\begin{aligned}
y & =\sum\left(y x_{n}\right) x_{n} \\
\|y\|^{2} & =\sum\left|\left(y x_{n}\right)\right|^{2}
\end{aligned}
$$

This condition of completeness is equivalent to:
(i) for any y in $\mathcal{H} y=\sum_{x \in N}(y x) x$
(ii) for any y in $\mathcal{H}\|y\|^{2}=z \sum_{x \in N}|(y x)|^{2}$.

