Question

Determine whether the Möbius transformation

$$
m(z)=\frac{4 z-5}{2 z+3}
$$

is parabolic,elliptic or loxodromic, and determine it's fixed points.If it is elliptic or loxodromic, determine its multiplier.

Answer

Use classification by trace squared: first normalize so that determinant is 1 . $\operatorname{det}(m)=12+10==22$, so m normalized is

$$
m(z)=\frac{\frac{4}{\sqrt{22}} z-\frac{5}{\sqrt{22}}}{\frac{2}{\sqrt{22}} z+\frac{3}{\sqrt{22}}}
$$

$\operatorname{Trace}^{2}(m)=\left(\frac{4}{\sqrt{22}}+\frac{3}{\sqrt{2} 2}\right)^{2}=\frac{49}{22}$
since $0 \leq \operatorname{trace}^{2}(m)<4, m$ is elliptic.
Find the multiplier from the trace squared.
$\left(\lambda+\lambda^{-1}\right)^{2}=\operatorname{trace}^{2}(m)=\frac{49}{22}$, where the multiplier of m is λ^{2}.
Then, $\lambda^{2}+\lambda^{-1}+2=\frac{49}{22}$, so $\lambda^{4}+1-\frac{5}{22} \lambda^{2}=0$
So, $\lambda^{2}=\frac{\left[\frac{5}{22}+\sqrt{\left(\frac{5}{22}\right)^{2}-4}\right]}{2}$ (and $\left|\lambda^{2}\right|=1$).
$\frac{5}{44} \pm \frac{\sqrt{1911} i}{44}$
The fixed points of m are the solutions to $m(z)=z$, namely
$4 z-5=z(2 z+3)$, on $2 z^{2}-z+5=0$, so
$z=\frac{1}{4}[1 \pm \sqrt{1-40}]=\frac{1}{4}(1 \pm \sqrt{39} i)$.

