Question

Let \mathbf{A} be the Euclidean circle given by the equation

$$3z\overline{z} + 10iz - 10i\overline{z} + 4 = 0$$

and let

$$m(z) = \frac{1}{z-1}.$$

Determine whether $m(\mathbf{A})$ is a Euclidean circle or the union of a Euclidean line with $\{\infty\}$. In the former case, determine its Euclidean centre and Euclidean radius. In the latter case, give its slope and the *y*-intercept.

Answer

Determine the equation for m(A): [15 points] set $w = m(z) = \frac{1}{z-1}$ and solve for z, so that $z = 1 + \frac{1}{w}$. Substitute into the equation for a and simplify:

$$0 = 3z\bar{z} + 10iz - 10i\bar{z} + 4$$

= $3\left(\frac{1}{w} + 1\right)\left(1 + \frac{1}{\bar{w}}\right) + 10i\left(\frac{1}{w} + 1\right) - 10i\left(\frac{1}{\bar{w}} + 1\right) + 4$
= $3\frac{1}{w}\frac{1}{\bar{w}} + (3 + 10i)\frac{1}{w} + (3 - 10i)\frac{1}{\bar{w}} + 7$
= $\frac{1}{w\bar{w}}\left(3 + (3 + 10i)\bar{w} + (3 - 10i)w + 7w\bar{w}\right)$

So, the equation for m(A) is

$$7w\bar{w} + (3 - 10i)w + (3 + 10i)\bar{w} + 3 = 0$$

which is a euclidean circle (since the coefficient of $w\bar{w}$ is nonzero). Determine the euclidean center and radius of m(A). [10 points] Complete the square:

$$w\bar{w} + \frac{3-10i}{7}w + \frac{3+10i}{7}\bar{w} + \frac{3}{7}$$

= $\left(w + \frac{3+10i}{7}\right)\left(\bar{w} + \frac{3-10i}{7}\right) + \frac{3}{7} - \frac{(3+10i)(3-10i)}{49}$
= $\left|w - \left(\frac{-3-10i}{7}\right)\right|^2 - \frac{88}{49} = 0$

So, the euclidean center is $\frac{-3-10i}{7}$ and the euclidean radius is $\frac{\sqrt{88}}{7}$.