## Question

Let $\mathbf{A}$ be the Euclidean circle given by the equation

$$
3 z \bar{z}+10 i z-10 i \bar{z}+4=0
$$

and let

$$
m(z)=\frac{1}{z-1}
$$

Determine whether $m(\mathbf{A})$ is a Euclidean circle or the union of a Euclidean line with $\{\infty\}$. In the former case, determine its Euclidean centre and Euclidean radius. In the latter case, give its slope and the $y$-intercept.

Answer
Determine the equation for $m(A)$ : [15 points]
set $w=m(z)=\frac{1}{z-1}$ and solve for z , so that $z=1+\frac{1}{w}$.
Substitute into the equation for $a$ and simplify:

$$
\begin{aligned}
0 & =3 z \bar{z}+10 i z-10 i \bar{z}+4 \\
& =3\left(\frac{1}{w}+1\right)\left(1+\frac{1}{\bar{w}}\right)+10 i\left(\frac{1}{w}+1\right)-10 i\left(\frac{1}{\bar{w}}+1\right)+4 \\
& =3 \frac{1}{w} \frac{1}{\bar{w}}+(3+10 i) \frac{1}{w}+(3-10 i) \frac{1}{\bar{w}}+7 \\
& =\frac{1}{w \bar{w}}(3+(3+10 i) \bar{w}+(3-10 i) w+7 w \bar{w})
\end{aligned}
$$

So, the equation for $m(A)$ is

$$
\underline{7 w \bar{w}+(3-10 i) w+(3+10 i) \bar{w}+3=0}
$$

which is a euclidean circle (since the coefficient of $w \bar{w}$ is nonzero). Determine the euclidean center and radius of $m(A)$. [10 points] Complete the square:

$$
\begin{aligned}
& w \bar{w}+\frac{3-10 i}{7} w+\frac{3+10 i}{7} \bar{w}+\frac{3}{7} \\
= & \left(w+\frac{3+10 i}{7}\right)\left(\bar{w}+\frac{3-10 i}{7}\right)+\frac{3}{7}-\frac{(3+10 i)(3-10 i)}{49} \\
= & \left|w-\left(\frac{-3-10 i}{7}\right)\right|^{2}-\frac{88}{49}=0
\end{aligned}
$$

So, the euclidean center is $\frac{-3-10 i}{7}$ and the euclidean radius is $\frac{\sqrt{88}}{7}$.

