

A Brief Introduction to Linked
Data and the Semantic Web
Dr Nick Gibbins – nmg@soton.ac.uk

https://edshare.soton.ac.uk/22005/

3

The World Wide Web:
Past, Present and Future

Berners-Lee, T. (1996) The World Wide Web: Past, Present and Future.
https://www.w3.org/People/Berners-Lee/1996/ppf.html

a goal of the Web was that, if the
interaction between person and
hypertext could be so intuitive
that the machine-readable
information space gave an
accurate representation of the
state of people's thoughts,
interactions, and work patterns,
then machine analysis could
become a very powerful
management tool, seeing patterns
in our work and facilitating our
working together

4

Weaving the Semantic Web

T. Berners-Lee (1999) Weaving the Web. San Francisco, CA: Harper

I have a dream for the Web [in
which computers] become capable
of analyzing all the data on the
Web – the content, links, and
transactions between people and
computers. A ‘Semantic Web’,
which should make this possible,
has yet to emerge, but when it
does, the day-to-day mechanisms
of trade, bureaucracy and our
daily lives will be handled by
machines talking to machines.

5

What is the Semantic Web?
“The goal of the Semantic Web initiative is as
broad as that of the Web: to create a
universal medium for the exchange of data.
It is envisaged to smoothly interconnect
personal information management,
enterprise application integration, and the
global sharing of commercial, scientific and
cultural data. Facilities to put machine-
understandable data on the Web are quickly
becoming a high priority for many
organizations, individuals and communities.

The Web can reach its full potential only if it
becomes a place where data can be shared
and processed by automated tools as well as
by people.”

W3C (2013) Semantic Web Activity Statement. https://www.w3.org/2001/sw/Activity

6

Rocket Science (not)

Berners-Lee, T. (2001) Business Model for the Semantic Web,
http://www.w3.org/DesignIssues/Business

Is this rocket science? Well, not
really. The Semantic Web, like the
World Wide Web, is just taking well
established ideas, and making
them work interoperably over the
Internet. This is done with
standards, which is what the World
Wide Web Consortium is all about.
We are not inventing relational
models for data, or query systems
or rule-based systems. We are just
webizing them.

Semantic Web Technical Architecture

8

XML + Namespaces

URI Unicode

Si
g
n
at

u
re

En
cr

yp
ti

o
n

Rules

Proof

Trust

RDF

RDF Schema

OWL

Identity

Standard syntax

Metadata

Ontologies +
Inference

Explanation

Attribution

SPARQL
(queries)

User Interface and Applications

The Semantic Web layer cake

8

9

Triples
Underlying data model of triples

Typed relationship between objects

RDF Semantics Pat Hayes
edited by

subject predicate object

10

Example

10

Take a citation:
• Tim Berners-Lee, James Hendler and Ora Lassila. The Semantic Web. Scientific American,

May 2001

We can identify a number of distinct statements in this citation:
• There is an article titled “The Semantic Web”

• One of its authors is a person named “Tim Berners-Lee” (etc)

• It appeared in a publication titled “Scientific American”

• It was published in May 2001

11

Example
We can represent these statements graphically:

Tim Berners-Lee

James Hendler

Ora Lassila

The Semantic Web

Scientific American

name

name

name

title

title

creator

publishedIn
creator

creator

2001-05date

12

Example
There are two types of vertex in this graph:

• Literals, which have a value but no identity
(a string, a number, a date)

• Resources, which represent objects with identity
(a web page, a person, a journal)

Scientific American

13

Example
Resources are identified by URIs

Properties are resources that are used as predicates

A collection of properties constitutes a vocabulary

http://purl.org/dc/terms/title

http://www.scientificamericancom/ Scientific American

subject predicate object

14

Mixing vocabularies

Tim Berners-Lee

James Hendler

Ora Lassila

The Semantic Web

Scientific American

name

name

name

title

title

creator

publishedIn
creator

creator

2001-05date

foaf

dc

bibo

Linked Data

16

Architecture of the World Wide Web
The Web architecture has four main components:

• Resources (webpages, etc)

• Identifiers for resources (URIs)

• Protocols for interacting with resources (HTTP)

• Data formats for representing the state of resources (HTML, XML, etc)

The Semantic Web builds on this foundation
• Rely on hypertextual nature of the Web to create links between data

17

Architecture of the World Wide Web

17http://www.w3.org/TR/webarch/

home page for
Example, Inc.

Resource

http://example.org/

URI

identifi
es

Metadata:
Content-Type: text/html

Data:
<html>
<head>
<title>Welcome to
Example, Inc.</title>
...
</html>

Representation
represents

yields on dereference

18

Linked Data Principles
Set of publishing practices for Semantic Web data:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information

4. Include links to other URIs. so that they can discover more things

Effectively, putting the hypertext back into the Semantic Web

Simplifies integration between datasets while maintaining loose coupling

19

Example
graph describing ‘sw’

sci
am

tbl

jh

ora

sw

The Semantic Web

title

creator

publishedIn creator

creator

2001-05

date

graph describing ‘tbl’

Tim Berners-Lee
name

tbl

graph describing ‘ora’

Ora Lassila
name

ora

graph describing ‘sciam’

Scientific American
title

sci
am

graph describing ‘jh’

James Hendler

name

jh

graph describing ‘creator’

type
Propertycreator

Resource Description Framework

21

Resource Description Framework

21

RDF is a framework for representing information about resources

• A data model (triples)

• Builds on Web architecture (uses URIs to identify resources and relations)

• Model-theoretic semantics (machine understandable)

• Many serialisation formats (RDF/XML, Turtle, JSON-LD, RDFa, etc)

22

Turtle: The Terse RDF Triple Language

22

Simple syntax derived from earlier RDF/N3 notation designed by Tim Berners-Lee

• Resource URIs are written in angle brackets: <http://example.org>

• Literal values are written in double quotes: "like this”

• Triples terminated with a full stop: .

• Whitespace not relevant

23

Triples in Turtle
Literals as objects:

<http://www.sciam.com> <http://purl.org/dc/terms/title> “Scientific American” .

23

http://purl.org/dc/terms/title
http://www.sciam.com/ Scientific American

subject predicate object

24

Triples in Turtle
Resources as objects:

<http://example.org> <http://purl.org/dc/terms/creator> <mailto:john@example.org> .

24

http://example.org/

http://purl.org/dc/terms/creator

mailto:john@example.org

25

Namespaces and qualified names

25

• RDF syntaxes use namespaces to abbreviate URIs to qualified names (QNames)

• A QName consists of a namespace prefix, a colon and a local name
• e.g. rdf:type, dc:creator, foaf:Person

• Namespace prefixes correspond to URI prefixes

For example:
• Given a namespace prefix of rdf for the URI http://www.w3.org/1999/02/22-rdf-syntax-ns#

• The QName rdf:type would expand to http://www.w3.org/1999/02/22-rdf-syntax-ns#type

26

Namespaces in Turtle
Defined using @prefix

@prefix dc: <http://purl.org/dc/terms/> .

<http://example.org> dc:creator <mailto:john@example.org> .

26

http://example.org/

http://purl.org/dc/terms/creator

mailto:john@example.org

note: no angle brackets

27

Repeated subjects
Use semicolon ;

@prefix dc: < http://purl.org/dc/terms/> .

<http://example.org> dc:title "Example Inc. Homepage" ;
 dc:creator <mailto:john @example.org> .

27

http://example.org/

http://purl.org/dc/terms/creator
mailto:john@example.org

Example Inc. Homepage

http://purl.org/dc/terms/title

28

Repeated subjects and predicates
Use comma ,

@prefix dc: < http://purl.org/dc/terms/> .

<http://example.org> dc:creator <mailto:john @example.org> ,
 <mailto:sally@example.org> .

28

http://example.org/

dc:creator
mailto:john@example.org

dc:creator

mailto:sally@example.org

29

Datatypes

29

Literal values presented so far are plain and do not have a type
• Many applications need to be able to distinguish between different typed literals

• e.g. integer vs. date vs. decimal

RDF uses XML Schema datatypes:

@prefix dc: < http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/> dc:date “2024-07-17”^^xsd:date .

Knowledge Representation
and Ontologies

31

Knowledge Representation

31

Long-standing concern in symbolic Artificial Intelligence

Knowledge representation is central to the Semantic Web
• Data published on the Semantic Web must be structured and organised

Most symbolic AI systems (and therefore SW systems) consist of:

• A knowledge base (KB)
• Structured according to the knowledge representation approach taken

• An inference mechanism
• Set of procedures that are used to examine the knowledge base to answer questions, solve

problems or make decisions within the domain

32

Ontologies

32

An ontology is a specification of a conceptualisation
• Specification: A formal description

• Conceptualisation: The objects, concepts, and other entities that are assumed to always
exist in some area of interest and the relationships that hold among them

An ontology is a vocabulary used to describe a certain reality, plus a set of explicit
assumptions regarding its intended meaning

The vocabularies we talked about earlier (i.e. collections of properties) are very simple
ontologies

RDF Schema

34

RDF Vocabulary Description Language

34

RDF lets us make assertions about resources using a given vocabulary

RDF does not let us define these domain vocabularies by itself

RDF Schema is an RDF vocabulary which we can use to define other RDF vocabularies

• Define classes of objects

• Define hierarchies of classes

• Define properties that relate objects to each other

• Define hierarchies of properties

• Define domains/ranges of properties

35

Notes on RDF and RDFS namespaces
Most terms in RDF Schema are defined as part of the RDFS namespace

• http://www.w3.org/2000/01/rdf-schema# , abbreviated here as rdfs:

Two terms are defined as part of the RDF namespace: rdf:type and rdf:Property

• http://www.w3.org/1999/02/22-rdf-syntax-ns# , abbreviated as rdf:

This is a historical accident, but can trip up the unwary

Be careful when using these terms in SPARQL queries!

36

RDF Schema class definitions
We wish to define the class Person:

ex:Person rdfs:Class
rdf:type

ex:Person rdf:type rdfs:Class .

37

RDF Schema class definitions
Employee is a subclass of Person

ex:Employee rdfs:Class
rdf:type

ex:Person

rdfs:subClassOf

ex:Employee rdf:type rdfs:Class ;
 rdfs:subClassOf ex:Person .

38

RDF Schema class semantics
rdfs:subClassOf is transitive

(A rdfs:subClassOf B) and (B rdfs:subClassOf C)
implies (A rdfs:subClassOf C)

Ex:PartTime
Employee

ex:Employee

rdfs:subClassOf

ex:Person

rdfs:subClassOf

rdfs:subClassOf

39

RDF Schema class semantics
rdfs:subClassOf is reflexive

• All classes are subclasses of themselves

ex:Person rdfs:subClassOf

40

RDF Schema class semantics
rdf:type distributes over rdf:subClassOf

• (A rdfs:subClassOf B) and (C rdf:type A)
implies (C rdf:type B)

John Smithex:Employee
rdf:type

ex:Person

rdfs:subClassOf

rdf:type

41

RDF Schema property definitions
We wish to define the property worksFor:

ex:WorksFor rdf:Property
rdf:type

ex:WorksFor rdf:type rdf:Property .

42

RDF Schema property definitions
Important difference between RDF and object-oriented programming languages
• OO languages define classes in terms of the properties they have
• RDF defines properties in terms of the classes whose instances they relate to

each other

The domain of a property is the class that the property runs from

The range of a property is the class that a property runs to

43

RDF Schema property definitions
The property worksFor relates objects of class Employee to objects of class Company

ex:worksFor rdf:type rdf:Property ;
 rdfs:domain ex:Employee ;
 rdfs:range ex:Company .

ex:worksFor rdf:Property
rdf:type

ex:Employee

ex:Company

rdfs:domain

rdfs:range

44

RDF Schema property definitions
Specialisation exists in properties as well as classes

• worksFor is a subproperty of affiliatedTo

ex:worksFor rdf:type rdf:Property ;
 rdfs:subPropertyOf ex:affiliatedTo

ex:worksFor rdf:Property
rdf:type

ex:affiliatedTo

rdfs:subPropertyOf

45

RDF Schema property semantics
rdfs:subPropertyOf is transitive and reflexive

• Entailment of superproperties

John Smith Example Inc.
ex:worksFor

ex:affiliatedTo

rdfs:subPropertyOf

46

RDF Schema property semantics
Type entailments from range and domain constraints

John Smith Example Inc.
ex:worksFor

rdfs:domain

ex:Employee ex:Company
rdfs:range

rdf:type rdf:type

The Ontology Design Lifecycle

48

Specification
Why are you building this ontology?

• Who will use this ontology?

• What will they use it for?

What is the domain of interest?
• How much detail do you need?

What questions do you need the ontology to answer?
(competency questions)

49

Conceptualisation
What classes exist in your ontology?

What properties relate them to each other?

What unique names are you going to use for these classes/properties?

50

Formalisation
What are the class/property hierarchies?

Are things classes or instances of classes?

What other constraints/restrictions do you need to express?

51

Implementation
Choose a language (RDF Schema, OWL)

Use an editor to build the ontology (Protégé)

Use a reasoner to check it as you build it

52

Evaluation
Is your ontology consistent?
(use a reasoner to check)

Does your ontology do what you set out to do?
(can it answer your competency questions?)

53

Documentation
Crucial for future usability and understanding of the ontology

• Brief definition of each class/property

• Synonyms for each class/property

• Rationale and assumptions for each class/property (why model it, how is it distinct
from other classes/properties?)

• Example instances of each class/property

Exercise:

Modelling a university

55

Protégé
Ontology editor developed by Stanford University

• Pre-dates the Semantic Web

• Heavily extended by researchers at the University of Manchester

Integrates reasoning into the ontology design process
• Check your ontology for consistency, subsumption, etc

• Available DL reasoners:

• HermiT – http://www.hermit-reasoner.com/

• Pellet – http://pellet.owldl.com/

• FaCT++ – http://owl.man.ac.uk/factplusplus

Description Logics

57

Beyond RDF Schema

57

RDF Schema is not expressive enough for many applications

• Only supports explicit class/property hierarchies

• Only supports global range and domain constraints

• There are things that you can’t infer

58

Description Logics

58

A family of knowledge representation formalisms
• A subset of first order predicate logic (i.e. more expressive than RDF Schema)

• Decidable – trade-off expressivity against algorithmic complexity

• Well understood – derived from work in the mid-80s to early 90s

• Model-theoretic formal semantics

• Simpler syntax than first order predicate logic

59

Description Logics

59

Description logics restrict the predicate types that can be used
• Unary predicates denote class membership

𝑃𝑒𝑟𝑠𝑜𝑛(𝑥)

• Binary predicates denote properties that relate instances

ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑(𝑥, 𝑦)

60

Description Logic reasoning tasks

60

Satisfaction
• “Can this class have any instances?"

Subsumption
• "Is every instance of this class necessarily an instance of that class?"

Classification
• "What classes is this object an instance of?"

61

Defining ontologies with Description Logics

61

Describe classes (concepts) in terms of their necessary and sufficient conditions

Consider an attribute A of a class C:

• Attribute A is a necessary condition for membership of C
• If an object is an instance of C, then it has A

• Attribute A is a sufficient condition for membership of C
• If an object has A, then it is an instance of C

62

Expressions

62

Description logic expressions consist of:

• Class and property descriptions:
• Atomic classes: Person

• Atomic properties: has child

• Complex classes: “A person with two living parents”

• Complex properties: “has parent’s brother” (i.e. "has uncle")

• Axioms that make statements about how concepts or roles are related to each other:
• “Every person with two living parents is thankful”

• “hasUncle is equivalent to has parent’s brother”

63

Constructors

63

Used to construct complex classes:
• Boolean classes constructors ¬𝐶	 𝐶 ⊔ 𝐷	 𝐶 ⊓ 𝐷
• Restrictions on properties ∀𝑅. 𝐶	 ∃𝑅. 𝐶
• Number/cardinality restrictions ≤ 𝑛	𝑅	 ≥ 𝑛	𝑅	 = 𝑛𝑅
• Nominals (singleton classes) {𝑥}
• Universal class, top ⊤
• Contradiction, bottom ⊥

Used to construct complex properties:
• Concrete domains (datatypes)

• Inverse properties 𝑅!

• Property composition 𝑅 ∘ 𝑆
• Transitive properties 𝑅"

64

Classes as sets

64

w

B

v

x

y

z

A

R

65

Class Intersection

Child ⊓ Happy
The class of things which are both
children and happy

Read as “Child and Happy”

HappyChild

66

Class Union

Rich ⊔ Famous
The class of things which are rich or
famous (or both)

Read as “Rich or Famous”

FamousRich

67

Class Complement

¬Happy
The class of things which are not happy

Read as “not Happy”

Happy

68

Existential Restriction

∃hasPet. Cat
The class of things which have some pet
that is a cat

• must have at least one pet

Read as “hasPet some Cat”

fluffy

Dog

felix

fido

john

jane

Cat

hasPet

jenny

69

john

jenny

Universal Restriction

∀hasPet. Cat
The class of things all of whose pets are
cats

• Or, which only have pets that are cats

• includes those things which have no pets

Read as “hasPet only Cat”

Dog

fluffy

felix

fido

jane

Cat

hasPet

70

john

jenny

fluffy

felix

fido

Universal Restriction

∀hasPet. Cat
The class of things all of whose pets are
cats

• Or, which only have pets that are cats

• includes those things which have no pets

Read as “hasPet only Cat”

Dog

jane

Cat

hasPet

71

jane

Value Restriction

∃hasPet. {;ido}
The class of things which have a particular
pet called Fido

Read as “hasPet value fido”
fluffy

Dog

felix

john

fido

Cat

hasPet

jenny

72

john

Cardinality Restriction

= 1	hasPet
The class of things which have exactly one
pet

Read as “hasPet exactly 1”
fluffy

Dog

felix

fido

jane

Cat

hasPet

jenny

73

jane

Cardinality Restriction

≥ 2	hasPet
The class of things which have at least
two pets

Read as “hasPet min 2”
fluffy

Dog

felix

john

fido

Cat

hasPet

jenny

74

jane

Qualified Cardinality Restriction

≥ 2	hasPet	. Cat
The class of things which have at least
two pets that are cats

Read as “hasPet min 2 Cat”
fluffy

Dog

felix

john

fido

Cat

hasPet

jenny

75

Property characteristics
• Functional

• Inverse functional

• Transitive

• Symmetric (is its own inverse)

• Asymmetric (is disjoint with its inverse)

• Reflexive (relates every object to itself)

• Irreflexive (relates no object to itself)

76

Revisiting Necessary and Sufficient Conditions

76

Membership of D is a necessary condition for membership of C

 𝐶 ⊑ 𝐷 (C is a primitive or partial class)

Membership of D is a sufficient condition for membership of C

 𝐶 ⊒ 𝐷
Membership of D is both a necessary and a sufficient condition for membership of C

 𝐶 ≡ 𝐷 (C is a defined class)

77

Ontology axioms (TBox)

77

C is a subclass of D 𝐶 ⊑ 𝐷

C is equivalent to D 𝐶 ≡ 𝐷

R is a subproperty of S 𝑅 ⊑ 𝑆

R is equivalent to S 𝑅 ≡ 𝑆

78

Ontology axioms (TBox)

78

C is disjoint with D 𝐶 ⊔ 𝐷 ≡	⊥

R has a domain of C ∃	𝑅. ⊤ ⊑ C

R has a range of C ⊤ ⊑ ∀𝑅. 𝐶

R is symmetric 𝑅 ≡ 𝑅!

R is transitive 𝑅" ⊑ 𝑅

R is functional ⊤ ⊑ ≤ 1	𝑅

79

Instance assertions (ABox)

79

Axioms describing a concrete situation

Class instantiation

𝐶(𝑥)
• x is of type C

Property instantiation

𝑅(𝑥, 𝑦)
• x has R of y

80

Description Logic Semantics

80

Δ is the domain (non-empty set of individuals)

Interpretation function ⋅ℐ maps:

• Class expressions to their extensions

(set of instances of that class, subsets of Δ)

• Properties to subsets of Δ×Δ
• Individuals to elements of Δ

Examples:

•𝐶ℐ is the set of members of 𝐶
• 𝐶 ⊔ 𝐷 ℐ

 is the set of members of either 𝐶 or 𝐷

81

Description Logic Semantics

81

Syntax Semantics Notes

𝐶 ⊓ 𝐷 ℐ 𝐶ℐ ∩ 𝐷ℐ Conjunction

𝐶 ⊔ 𝐷 ℐ 𝐶ℐ ∪ 𝐷ℐ Disjunction

¬𝐶 ℐ Δ\Cℐ Complement

∃𝑅. 𝐶 ℐ {𝑥|∃𝑦	. 𝑥, 𝑦 ∈ 𝑅ℐ ∧ 𝑦 ∈ 𝐶ℐ} Existential

∀𝑅. 𝐶 ℐ {𝑥|∀𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ⇒ 𝑦 ∈ 𝐶ℐ} Universal

≥ 𝑛	𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ≥ 𝑛} Min cardinality

≤ 𝑛	𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ≤ 𝑛} Max cardinality

= 𝑛	𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ = 𝑛} Exact cardinality

⊥ ℐ ∅ Bottom

⊤ ℐ Δ Top

82

Interpretation Example

Δ = 𝑣,𝑤, 𝑥, 𝑦, 𝑧
𝐴ℐ = 𝑣,𝑤, 𝑥
𝐵ℐ = 𝑥, 𝑦
𝑅ℐ = { 𝑣,𝑤 , 𝑣, 𝑥 , 𝑦, 𝑥 , 𝑥, 𝑧 }

w

𝑩ℐ

v

x

y

z

𝑨ℐ

Δ

R

83

Interpretation Example

¬𝐵 ℐ = {v,w, z}
𝐴 ⊔ 𝐵 ℐ = {v,w, x, y}
¬𝐴 ⊓ 𝐵 ℐ = {y}
∃𝑅. 𝐵 ℐ = {v, y}
∀𝑅. 𝐵 ℐ = {y,w, z}
∃𝑅. ∃𝑅. 𝐴 ℐ = {}
∃𝑅.¬ 𝐴 ⊓ 𝐵

ℐ
= v, x

∃𝑅7	. 𝐴 ℐ = 𝑤, 𝑥, 𝑧
𝑅8 ℐ = { 𝑣,𝑤 , 𝑣, 𝑥 , 𝑣, 𝑧 , 𝑦, 𝑥 , 𝑦, 𝑧 , 𝑥, 𝑧 }

w

v

x

y

z

Δ

𝑩ℐ𝑨ℐ

R

84

Description Logic Reasoning Tasks Revisited

84

A description logic knowledge base comprises:
• A TBox defining classes and properties

• An ABox containing assertations about instances

𝐾 = ⟨𝑇𝐵𝑜𝑥, 𝐴𝐵𝑜𝑥⟩

We have an interpretation ℐ = ⟨Δ,⋅ℐ⟩ which maps the instances, classes and properties in
𝐾 onto a domain Δ via an interpretation function ⋅ℐ

We can redefine the reasoning tasks in terms of ℐ

85

Description Logic Reasoning Tasks Revisited

85

Satisfaction: Can this class have any instances?
A class 𝐶 is satisfiable w.r.t a KB 𝐾 iff there exists an interpretation ℐ of 𝐾 with 𝐶ℐ ≠ ∅

Subsumption: Is every instance of this class necessarily an instance of this other class?
A class 𝐶 is subsumed by a class 𝐷 w.r.t. a KB 𝐾 iff for every interpretation ℐ of 𝐾, 𝐶ℐ ⊆ 𝐷ℐ

Classification: Is this individual necessarily an instance of this class?
An individual 𝑥 is an instance of class C w.r.t. a KB 𝐾 iff for every interpretation ℐ of 𝐾, 𝑥ℐ ∈ 𝐶ℐ

86

Reduction to Satisfaction

86

Tableau-based description logic reasoners reduce all reasoning tasks to satisfaction:

Subsumption
𝐶 is subsumed by 𝐷 ⟺ (𝐶 ⊓ ¬𝐷) is unsatisfiable

Classification
𝑥 is an instance of 𝐶 ⟺ (¬𝐶 ⊓ 𝑥) is unsatisfiable

Web Ontology Language (OWL)

88

Introducing the OWL Web Ontology Language
OWL is an ontology language that is:

• More expressive than RDF Schema

• Based on description logics

• Compatible with the semantics of RDF and RDF Schema

89

OWL Features

89

• Property restrictions (local range/cardinality/value/self constraints)

• Equivalence and identity relations

• Property characteristics (transitive, symmetric, asymmetric, functional, inverse,
reflexive, irreflexive, disjoint)

• Complex classes (set operators, enumerated classes, disjoint classes)

Exercise:

Modelling pizzas

90

91

Manchester DL syntax
The DL syntax we’ve used so far is a ‘traditional’ syntax for logical expressions

• Not well understood by non-logicians

• Not easy to type (lots of special symbols)

The Manchester DL syntax is a more user-friendly syntax for use in tools
• Used extensively in Protégé for class restrictions

• http://www.w3.org/TR/owl2-manchester-syntax/

92

Manchester Syntax Summary
Traditional DL Syntax Manchester Syntax

𝐶 ⊓ 𝐷 C and D

𝐶 ⊔ 𝐷 C or D

¬𝐶 not C

∃𝑅. 𝐶 R some C

∀𝑅. 𝐶 R only C

≥ 𝑛	𝑅 R min n

≤ 𝑛	𝑅 R max n

= 𝑛	𝑅 R exactly n

∃𝑅. {𝑥} R value x

≥ 𝑛	𝑅. 𝐶 R min n C

Reflexive property R Self

Datatype restrictions int[>=2, <=15]

