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The World Wide Web: 
Past, Present and Future

Berners-Lee, T. (1996) The World Wide Web: Past, Present and Future. 
https://www.w3.org/People/Berners-Lee/1996/ppf.html

a goal of the Web was that, if the 
interaction between person and 
hypertext could be so intuitive 
that the machine-readable 
information space gave an 
accurate representation of the 
state of people's thoughts, 
interactions, and work patterns, 
then machine analysis could 
become a very powerful 
management tool, seeing patterns 
in our work and facilitating our 
working together



4

Weaving the Semantic Web

T. Berners-Lee (1999) Weaving the Web. San Francisco, CA: Harper

I have a dream for the Web [in 
which computers] become capable 
of analyzing all the data on the 
Web – the content, links, and 
transactions between people and 
computers. A ‘Semantic Web’, 
which should make this possible, 
has yet to emerge, but when it 
does, the day-to-day mechanisms 
of trade, bureaucracy and our 
daily lives will be handled by 
machines talking to machines. 
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What is the Semantic Web?
“The goal of the Semantic Web initiative is as 
broad as that of the Web: to create a 
universal medium for the exchange of data. 
It is envisaged to smoothly interconnect 
personal information management, 
enterprise application integration, and the 
global sharing of commercial, scientific and 
cultural data. Facilities to put machine-
understandable data on the Web are quickly 
becoming a high priority for many 
organizations, individuals and communities.

The Web can reach its full potential only if it 
becomes a place where data can be shared 
and processed by automated tools as well as 
by people.”

W3C (2013) Semantic Web Activity Statement. https://www.w3.org/2001/sw/Activity
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Rocket Science (not)

Berners-Lee, T. (2001) Business Model for the Semantic Web, 
http://www.w3.org/DesignIssues/Business

Is this rocket science? Well, not 
really. The Semantic Web, like the 
World Wide Web, is just taking well 
established ideas, and making 
them work interoperably over the 
Internet. This is done with 
standards, which is what the World 
Wide Web Consortium is all about. 
We are not inventing relational 
models for data, or query systems 
or rule-based systems. We are just 
webizing them. 



Semantic Web Technical Architecture
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Triples
Underlying data model of triples

Typed relationship between objects

RDF Semantics Pat Hayes
edited by

subject predicate object
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Example

10

Take a citation:
• Tim Berners-Lee, James Hendler and Ora Lassila. The Semantic Web. Scientific American, 

May 2001

We can identify a number of distinct statements in this citation:
• There is an article titled “The Semantic Web”

• One of its authors is a person named “Tim Berners-Lee” (etc)

• It appeared in a publication titled “Scientific American”

• It was published in May 2001
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Example
We can represent these statements graphically:

Tim Berners-Lee

James Hendler

Ora Lassila

The Semantic Web

Scientific American

name

name

name

title

title

creator

publishedIn
creator

creator

2001-05date
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Example
There are two types of vertex in this graph:

• Literals, which have a value but no identity
(a string, a number, a date)

• Resources, which represent objects with identity
(a web page, a person, a journal)

Scientific American
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Example
Resources are identified by URIs

Properties are resources that are used as predicates

A collection of properties constitutes a vocabulary

http://purl.org/dc/terms/title 

http://www.scientificamericancom/ Scientific American

subject predicate object
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Mixing vocabularies

Tim Berners-Lee

James Hendler

Ora Lassila

The Semantic Web

Scientific American

name

name

name

title

title

creator

publishedIn
creator

creator

2001-05date

foaf

dc

bibo



Linked Data
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Architecture of the World Wide Web
The Web architecture has four main components:

• Resources (webpages, etc)

• Identifiers for resources (URIs)

• Protocols for interacting with resources (HTTP)

• Data formats for representing the state of resources (HTML, XML, etc)

The Semantic Web builds on this foundation
• Rely on hypertextual nature of the Web to create links between data
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Architecture of the World Wide Web

17http://www.w3.org/TR/webarch/

home page for 
Example, Inc.

Resource

http://example.org/

URI

identifi
es

Metadata: 
Content-Type: text/html

Data:
<html>
<head>
<title>Welcome to 
Example, Inc.</title>
...
</html>

Representation
represents

yields on dereference



18

Linked Data Principles
Set of publishing practices for Semantic Web data:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information

4. Include links to other URIs. so that they can discover more things

Effectively, putting the hypertext back into the Semantic Web

Simplifies integration between datasets while maintaining loose coupling
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Example
graph describing ‘sw’

sci
am

tbl

jh

ora

sw

The Semantic Web

title

creator

publishedIn creator

creator

2001-05

date

graph describing ‘tbl’

Tim Berners-Lee
name

tbl

graph describing ‘ora’

Ora Lassila
name

ora

graph describing ‘sciam’

Scientific American
title

sci
am

graph describing ‘jh’

James Hendler

name

jh

graph describing ‘creator’

type
Propertycreator



Resource Description Framework
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Resource Description Framework

21

RDF is a framework for representing information about resources

• A data model (triples)

• Builds on Web architecture (uses URIs to identify resources and relations)

• Model-theoretic semantics (machine understandable)

• Many serialisation formats (RDF/XML, Turtle, JSON-LD, RDFa, etc)
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Turtle: The Terse RDF Triple Language

22

Simple syntax derived from earlier RDF/N3 notation designed by Tim Berners-Lee

• Resource URIs are written in angle brackets: <http://example.org>

• Literal values are written in double quotes:  "like this”

• Triples terminated with a full stop:   .

• Whitespace not relevant
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Triples in Turtle
Literals as objects:

<http://www.sciam.com> <http://purl.org/dc/terms/title> “Scientific American” .

23

http://purl.org/dc/terms/title 
http://www.sciam.com/ Scientific American

subject predicate object
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Triples in Turtle
Resources as objects:

<http://example.org> <http://purl.org/dc/terms/creator> <mailto:john@example.org> .

24

http://example.org/

http://purl.org/dc/terms/creator 

mailto:john@example.org
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Namespaces and qualified names

25

• RDF syntaxes use namespaces to abbreviate URIs to qualified names (QNames)

• A QName consists of a namespace prefix, a colon and a local name
• e.g. rdf:type, dc:creator, foaf:Person

• Namespace prefixes correspond to URI prefixes 

For example:
• Given a namespace prefix of rdf for the URI http://www.w3.org/1999/02/22-rdf-syntax-ns#

• The QName rdf:type would expand to http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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Namespaces in Turtle
Defined using @prefix

@prefix dc: <http://purl.org/dc/terms/> .

<http://example.org> dc:creator <mailto:john@example.org> .

26

http://example.org/

http://purl.org/dc/terms/creator 

mailto:john@example.org

note: no angle brackets
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Repeated subjects
Use semicolon ;

@prefix dc: < http://purl.org/dc/terms/> .

<http://example.org> dc:title "Example Inc. Homepage" ; 
                     dc:creator <mailto:john @example.org> .

27

http://example.org/

http://purl.org/dc/terms/creator 
mailto:john@example.org

Example Inc. Homepage

http://purl.org/dc/terms/title 



28

Repeated subjects and predicates
Use comma ,

@prefix dc: < http://purl.org/dc/terms/> .

<http://example.org> dc:creator <mailto:john @example.org> , 
                                <mailto:sally@example.org> .

28

http://example.org/

dc:creator 
mailto:john@example.org

dc:creator 

mailto:sally@example.org
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Datatypes

29

Literal values presented so far are plain and do not have a type
• Many applications need to be able to distinguish between different typed literals

• e.g. integer vs. date vs. decimal

RDF uses XML Schema datatypes:

@prefix dc: < http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/> dc:date “2024-07-17”^^xsd:date .



Knowledge Representation 
and Ontologies
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Knowledge Representation

31

Long-standing concern in symbolic Artificial Intelligence

Knowledge representation is central to the Semantic Web
• Data published on the Semantic Web must be structured and organised

Most symbolic AI systems (and therefore SW systems) consist of:

• A knowledge base (KB)
• Structured according to the knowledge representation approach taken

• An inference mechanism
• Set of procedures that are used to examine the knowledge base to answer questions, solve 

problems or make decisions within the domain
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Ontologies

32

An ontology is a specification of a conceptualisation
• Specification: A formal description

• Conceptualisation: The objects, concepts, and other entities that are assumed to always 
exist in some area of interest and the relationships that hold among them

An ontology is a vocabulary used to describe a certain reality, plus a set of explicit 
assumptions regarding its intended meaning

The vocabularies we talked about earlier (i.e. collections of properties) are very simple 
ontologies



RDF Schema 
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RDF Vocabulary Description Language

34

RDF lets us make assertions about resources using a given vocabulary 

RDF does not let us define these domain vocabularies by itself

RDF Schema is an RDF vocabulary which we can use to define other RDF vocabularies

• Define classes of objects 

• Define hierarchies of classes

• Define properties that relate objects to each other 

• Define hierarchies of properties

• Define domains/ranges of properties
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Notes on RDF and RDFS namespaces
Most terms in RDF Schema are defined as part of the RDFS namespace

• http://www.w3.org/2000/01/rdf-schema# , abbreviated here as rdfs:

Two terms are defined as part of the RDF namespace: rdf:type and rdf:Property

• http://www.w3.org/1999/02/22-rdf-syntax-ns# , abbreviated as rdf:

This is a historical accident, but can trip up the unwary

Be careful when using these terms in SPARQL queries!
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RDF Schema class definitions
We wish to define the class Person:

ex:Person rdfs:Class
rdf:type

ex:Person rdf:type rdfs:Class .
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RDF Schema class definitions
Employee is a subclass of Person

ex:Employee rdfs:Class
rdf:type

ex:Person

rdfs:subClassOf

ex:Employee rdf:type rdfs:Class ; 
            rdfs:subClassOf ex:Person . 
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RDF Schema class semantics
rdfs:subClassOf is transitive

(A rdfs:subClassOf B) and (B rdfs:subClassOf C) 
implies (A rdfs:subClassOf C)

Ex:PartTime 
Employee

ex:Employee

rdfs:subClassOf

ex:Person

rdfs:subClassOf

rdfs:subClassOf
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RDF Schema class semantics
rdfs:subClassOf is reflexive

• All classes are subclasses of themselves

ex:Person rdfs:subClassOf



40

RDF Schema class semantics
rdf:type distributes over rdf:subClassOf

• (A rdfs:subClassOf B) and (C rdf:type A)
implies (C rdf:type B)

John Smithex:Employee
rdf:type

ex:Person

rdfs:subClassOf

rdf:type



41

RDF Schema property definitions
We wish to define the property worksFor:

ex:WorksFor rdf:Property
rdf:type

ex:WorksFor rdf:type rdf:Property .
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RDF Schema property definitions
Important difference between RDF and object-oriented programming languages
• OO languages define classes in terms of the properties they have
• RDF defines properties in terms of the classes whose instances they relate to 

each other

The domain of a property is the class that the property runs from

The range of a property is the class that a property runs to
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RDF Schema property definitions
The property worksFor relates objects of class Employee to objects of class Company

ex:worksFor rdf:type rdf:Property ;
            rdfs:domain ex:Employee ;
            rdfs:range ex:Company .

ex:worksFor rdf:Property
rdf:type

ex:Employee

ex:Company

rdfs:domain

rdfs:range



44

RDF Schema property definitions
Specialisation exists in properties as well as classes

• worksFor is a subproperty of affiliatedTo

ex:worksFor rdf:type rdf:Property ;
            rdfs:subPropertyOf ex:affiliatedTo

ex:worksFor rdf:Property
rdf:type

ex:affiliatedTo

rdfs:subPropertyOf
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RDF Schema property semantics
rdfs:subPropertyOf is transitive and reflexive

• Entailment of superproperties

John Smith Example Inc.
ex:worksFor

ex:affiliatedTo

rdfs:subPropertyOf
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RDF Schema property semantics
Type entailments from range and domain constraints

John Smith Example Inc.
ex:worksFor

rdfs:domain

ex:Employee ex:Company
rdfs:range

rdf:type rdf:type



The Ontology Design Lifecycle



48

Specification
Why are you building this ontology?

• Who will use this ontology?

• What will they use it for?

What is the domain of interest? 
• How much detail do you need?

What questions do you need the ontology to answer?
(competency questions)
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Conceptualisation
What classes exist in your ontology?

What properties relate them to each other?

What unique names are you going to use for these classes/properties?
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Formalisation
What are the class/property hierarchies?

Are things classes or instances of classes?

What other constraints/restrictions do you need to express?
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Implementation
Choose a language (RDF Schema, OWL)

Use an editor to build the ontology (Protégé)

Use a reasoner to check it as you build it
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Evaluation
Is your ontology consistent?
(use a reasoner to check)

Does your ontology do what you set out to do?
(can it answer your competency questions?)
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Documentation
Crucial for future usability and understanding of the ontology

• Brief definition of each class/property

• Synonyms for each class/property

• Rationale and assumptions for each class/property (why model it, how is it distinct 
from other classes/properties?)

• Example instances of each class/property



Exercise:

Modelling a university
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Protégé
Ontology editor developed by Stanford University

• Pre-dates the Semantic Web

• Heavily extended by researchers at the University of Manchester

Integrates reasoning into the ontology design process
• Check your ontology for consistency, subsumption, etc

• Available DL reasoners:

• HermiT – http://www.hermit-reasoner.com/

• Pellet – http://pellet.owldl.com/

• FaCT++ – http://owl.man.ac.uk/factplusplus



Description Logics
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Beyond RDF Schema

57

RDF Schema is not expressive enough for many applications

• Only supports explicit class/property hierarchies

• Only supports global range and domain constraints

• There are things that you can’t infer
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Description Logics

58

A family of knowledge representation formalisms
• A subset of first order predicate logic (i.e. more expressive than RDF Schema)

• Decidable – trade-off expressivity against algorithmic complexity

• Well understood – derived from work in the mid-80s to early 90s

• Model-theoretic formal semantics 

• Simpler syntax than first order predicate logic
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Description Logics

59

Description logics restrict the predicate types that can be used
• Unary predicates denote class membership

𝑃𝑒𝑟𝑠𝑜𝑛(𝑥)

• Binary predicates denote properties that relate instances

ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑(𝑥, 𝑦)



60

Description Logic reasoning tasks

60

Satisfaction
• “Can this class have any instances?"

Subsumption
• "Is every instance of this class necessarily an instance of that class?"

Classification
• "What classes is this object an instance of?"
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Defining ontologies with Description Logics

61

Describe classes (concepts) in terms of their necessary and sufficient conditions

Consider an attribute A of a class C:

• Attribute A is a necessary condition for membership of C
• If an object is an instance of C, then it has A

• Attribute A is a sufficient condition for membership of C
• If an object has A, then it is an instance of C



62

Expressions

62

Description logic expressions consist of:

• Class and property descriptions:
• Atomic classes: Person

• Atomic properties: has child

• Complex classes: “A person with two living parents”

• Complex properties: “has parent’s brother” (i.e. "has uncle")

• Axioms that make statements about how concepts or roles are related to each other:
• “Every person with two living parents is thankful”

• “hasUncle is equivalent to has parent’s brother”
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Constructors

63

Used to construct complex classes:
• Boolean classes constructors ¬𝐶	 𝐶 ⊔ 𝐷	 𝐶 ⊓ 𝐷
• Restrictions on properties  ∀𝑅. 𝐶	 ∃𝑅. 𝐶
• Number/cardinality restrictions ≤ 𝑛	𝑅	 ≥ 𝑛	𝑅	 = 𝑛𝑅
• Nominals (singleton classes) {𝑥}
• Universal class, top   ⊤
• Contradiction, bottom  ⊥

Used to construct complex properties:
• Concrete domains (datatypes)

• Inverse properties   𝑅!

• Property composition  𝑅 ∘ 𝑆
• Transitive properties  𝑅"
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Classes as sets

64

w

B

v

x

y

z

A

R
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Class Intersection

Child ⊓ Happy
The class of things which are both 
children and happy

Read as “Child and Happy”

HappyChild
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Class Union

Rich ⊔ Famous
The class of things which are rich or 
famous (or both)

Read as “Rich or Famous”

FamousRich
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Class Complement

¬Happy
The class of things which are not happy

Read as “not Happy”

Happy
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Existential Restriction

∃hasPet. Cat
The class of things which have some pet 
that is a cat

• must have at least one pet

Read as “hasPet some Cat”

fluffy

Dog

felix

fido

john

jane

Cat

hasPet

jenny
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john

jenny

Universal Restriction

∀hasPet. Cat
The class of things all of whose pets are 
cats 

• Or, which only have pets that are cats

• includes those things which have no pets

Read as “hasPet only Cat”

Dog

fluffy

felix

fido

jane

Cat

hasPet
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john

jenny

fluffy

felix

fido

Universal Restriction

∀hasPet. Cat
The class of things all of whose pets are 
cats 

• Or, which only have pets that are cats

• includes those things which have no pets

Read as “hasPet only Cat”

Dog

jane

Cat

hasPet
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jane

Value Restriction

∃hasPet. {;ido}
The class of things which have a particular 
pet called Fido

Read as “hasPet value fido”
fluffy

Dog

felix

john

fido

Cat

hasPet

jenny
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john

Cardinality Restriction

= 1	hasPet
The class of things which have exactly one 
pet

Read as “hasPet exactly 1”
fluffy

Dog

felix

fido

jane

Cat

hasPet

jenny
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jane

Cardinality Restriction

≥ 2	hasPet
The class of things which have at least 
two pets

Read as “hasPet min 2”
fluffy

Dog

felix

john

fido

Cat

hasPet

jenny
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jane

Qualified Cardinality Restriction

≥ 2	hasPet	. Cat
The class of things which have at least 
two pets that are cats

Read as “hasPet min 2 Cat”
fluffy

Dog

felix

john

fido

Cat

hasPet

jenny
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Property characteristics
• Functional

• Inverse functional

• Transitive

• Symmetric (is its own inverse)

• Asymmetric (is disjoint with its inverse)

• Reflexive (relates every object to itself)

• Irreflexive (relates no object to itself)
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Revisiting Necessary and Sufficient Conditions

76

Membership of D is a necessary condition for membership of C

 𝐶 ⊑ 𝐷 (C is a primitive or partial class)

Membership of D is a sufficient condition for membership of C

 𝐶 ⊒ 𝐷
Membership of D is both a necessary and a sufficient condition for membership of C

 𝐶 ≡ 𝐷 (C is a defined class)
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Ontology axioms (TBox)

77

C is a subclass of D 𝐶 ⊑ 𝐷

C is equivalent to D 𝐶 ≡ 𝐷

R is a subproperty of S 𝑅 ⊑ 𝑆 

R is equivalent to S 𝑅 ≡ 𝑆 
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Ontology axioms (TBox)

78

C is disjoint with D 𝐶 ⊔ 𝐷 ≡	⊥

R has a domain of C ∃	𝑅. ⊤ ⊑ C

R has a range of C ⊤ ⊑ ∀𝑅. 𝐶

R is symmetric 𝑅 ≡ 𝑅!

R is transitive 𝑅" ⊑ 𝑅

R is functional ⊤ ⊑ ≤ 1	𝑅
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Instance assertions (ABox)

79

Axioms describing a concrete situation 

Class instantiation

𝐶(𝑥)
• x is of type C

Property instantiation

𝑅(𝑥, 𝑦)
• x has R of y
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Description Logic Semantics

80

Δ is the domain (non-empty set of individuals)

Interpretation function ⋅ℐ  maps:

• Class expressions to their extensions 

(set of instances of that class, subsets of Δ)

• Properties to subsets of Δ×Δ
• Individuals to elements of Δ

Examples:

•𝐶ℐ  is the set of members of 𝐶
• 𝐶 ⊔ 𝐷 ℐ

 is the set of members of either 𝐶 or 𝐷
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Description Logic Semantics

81

Syntax Semantics Notes

𝐶 ⊓ 𝐷 ℐ 𝐶ℐ ∩ 𝐷ℐ Conjunction

𝐶 ⊔ 𝐷 ℐ 𝐶ℐ ∪ 𝐷ℐ Disjunction

¬𝐶 ℐ Δ\Cℐ Complement

∃𝑅. 𝐶 ℐ {𝑥|∃𝑦	. 𝑥, 𝑦 ∈ 𝑅ℐ ∧ 𝑦 ∈ 𝐶ℐ} Existential

∀𝑅. 𝐶 ℐ {𝑥|∀𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ⇒ 𝑦 ∈ 𝐶ℐ} Universal

≥ 𝑛	𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ≥ 𝑛} Min cardinality

≤ 𝑛	𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ≤ 𝑛} Max cardinality

= 𝑛	𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ = 𝑛} Exact cardinality

⊥ ℐ ∅ Bottom

⊤ ℐ Δ Top
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Interpretation Example

Δ = 𝑣,𝑤, 𝑥, 𝑦, 𝑧
𝐴ℐ = 𝑣,𝑤, 𝑥
𝐵ℐ = 𝑥, 𝑦
𝑅ℐ = { 𝑣,𝑤 , 𝑣, 𝑥 , 𝑦, 𝑥 , 𝑥, 𝑧 }

w

𝑩ℐ

v

x

y

z

𝑨ℐ

Δ

R
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Interpretation Example

¬𝐵 ℐ = {v,w, z}
𝐴 ⊔ 𝐵 ℐ = {v,w, x, y}
¬𝐴 ⊓ 𝐵 ℐ = {y}
∃𝑅. 𝐵 ℐ = {v, y}
∀𝑅. 𝐵 ℐ = {y,w, z}
∃𝑅. ∃𝑅. 𝐴 ℐ = {}
∃𝑅.¬ 𝐴 ⊓ 𝐵

ℐ
= v, x

∃𝑅7	. 𝐴 ℐ = 𝑤, 𝑥, 𝑧
𝑅8 ℐ = { 𝑣,𝑤 , 𝑣, 𝑥 , 𝑣, 𝑧 , 𝑦, 𝑥 , 𝑦, 𝑧 , 𝑥, 𝑧 }

w

v

x

y

z

Δ

𝑩ℐ𝑨ℐ

R
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Description Logic Reasoning Tasks Revisited

84

A description logic knowledge base comprises:
•  A TBox defining classes and properties

• An ABox containing assertations about instances

𝐾 = ⟨𝑇𝐵𝑜𝑥, 𝐴𝐵𝑜𝑥⟩

We have an interpretation ℐ = ⟨Δ,⋅ℐ⟩ which maps the instances, classes and properties in 
𝐾 onto a domain Δ via an interpretation function ⋅ℐ

We can redefine the reasoning tasks in terms of ℐ
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Description Logic Reasoning Tasks Revisited

85

Satisfaction: Can this class have any instances?
A class 𝐶 is satisfiable w.r.t a KB 𝐾 iff there exists an interpretation ℐ of 𝐾 with 𝐶ℐ ≠ ∅

Subsumption: Is every instance of this class necessarily an instance of this other class?
A class 𝐶 is subsumed by a class 𝐷 w.r.t. a KB 𝐾 iff for every interpretation ℐ of 𝐾, 𝐶ℐ ⊆ 𝐷ℐ

Classification: Is this individual necessarily an instance of this class?
An individual 𝑥 is an instance of class C w.r.t. a KB 𝐾 iff for every interpretation ℐ of 𝐾, 𝑥ℐ ∈ 𝐶ℐ



86

Reduction to Satisfaction

86

Tableau-based description logic reasoners reduce all reasoning tasks to satisfaction:

Subsumption
𝐶 is subsumed by 𝐷 ⟺  (𝐶 ⊓ ¬𝐷) is unsatisfiable

Classification
𝑥 is an instance of 𝐶 ⟺ (¬𝐶 ⊓ 𝑥 ) is unsatisfiable



Web Ontology Language (OWL)
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Introducing the OWL Web Ontology Language
OWL is an ontology language that is:

• More expressive than RDF Schema

• Based on description logics

• Compatible with the semantics of RDF and RDF Schema
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OWL Features
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• Property restrictions (local range/cardinality/value/self constraints)

• Equivalence and identity relations

• Property characteristics (transitive, symmetric, asymmetric, functional, inverse, 
reflexive, irreflexive, disjoint)

• Complex classes (set operators, enumerated classes, disjoint classes)



Exercise: 

Modelling pizzas
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Manchester DL syntax
The DL syntax we’ve used so far is a ‘traditional’ syntax for logical expressions

• Not well understood by non-logicians

• Not easy to type (lots of special symbols)

The Manchester DL syntax is a more user-friendly syntax for use in tools
• Used extensively in Protégé for class restrictions

• http://www.w3.org/TR/owl2-manchester-syntax/
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Manchester Syntax Summary
Traditional DL Syntax Manchester Syntax

𝐶 ⊓ 𝐷 C and D

𝐶 ⊔ 𝐷 C or D

¬𝐶 not C

∃𝑅. 𝐶 R some C

∀𝑅. 𝐶 R only C

≥ 𝑛	𝑅 R min n

≤ 𝑛	𝑅 R max n

= 𝑛	𝑅 R exactly n

∃𝑅. {𝑥} R value x

≥ 𝑛	𝑅. 𝐶 R min n C

Reflexive property R Self

Datatype restrictions int[>=2, <=15]


