Coordinate Geometry

Conic sections

These are plane curves which can be described as the intersection of a cone with planes oriented in various directions.
It can be demonstrated that the locus of a point which moves so that its distance from a fixed point (the focus) is a constant multiple (e - the eccentricity) of its distance from a fixed straight line (the directrix) is a conic section.
If $e<1$ we obtain an ellipse.
If $e=1$ we obtain a parabola.
If $e>1$ we obtain a hyperbola.
See Scientific American September 1977-Mathematical games section p24.

Cartesian equation

Take as the x-axis a line perpendicular to the directrix passing through the focus. Take the origin to be where the conic cuts the axis between the focus and directrix.
DIAGRAM
From the definition of a conic $S P^{2}=e^{2} P M^{2}$
$y^{2}+(x-e k)^{2}=e^{2}(x+k)^{2}$
$y^{2}+x^{2}-2 e k x+e^{2} k^{2}=e^{2} x^{2}+2 e^{2} k x+e^{2} k^{2}$
$y^{2}+x^{2}\left(1-e^{2}\right)-2 k e(1+e) x=0$
If we have a parabola where $e=1$ then the equation reduces to $y^{2}=4 k x$. If $e \neq 1$ we write the equation in the form
$\frac{y^{2}}{1-e^{2}}+\left(x-\frac{k e}{1-e}\right)^{2}=\frac{k^{2} e^{2}}{(1-e)^{2}}$
We now write $\frac{k e}{1-e}=a$, and shift the origin to the point ($a, 0$). Referred to these new axes the equation becomes
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$
The focus becomes the point $(-a e, 0)$ and the directrix the line $x=-\frac{a}{e}$.
Notice that the equation is unchanged if x is replaced be $-x$, so that there is a second focus at $x=(a e, 0)$ and a second directrix at $x=\frac{a}{e}$.
For an ellipse $e<1$ and we write $b^{2}=a^{2}\left(1-e^{2}\right)$ so the equation becomes $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

For a hyperbola $e>1$ and we write $b^{2}=a^{2}\left(e^{2}-1\right)$ so the equation becomes $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

Focal distance properties

Ellipse $(e<1)$
DIAGRAM
From the definition

$$
\begin{aligned}
S_{1} P+S_{2} P & =e P M_{1}+e P M_{2}=e\left(P M_{1}+P M_{2}\right) \\
& =e M_{1} M_{2}=e \frac{2 a}{e}=2 a
\end{aligned}
$$

So the sum of the focal distances is constant.
Hyperbola ($e>1$)
DIAGRAM
From the definition

$$
\begin{aligned}
S_{2} P-S_{1} P & =e P M_{2}-e P M_{1}=e\left(P M_{2}-P M_{1}\right) \\
& =e \frac{2 a}{e}=2 a
\end{aligned}
$$

Similarly
$S_{1} Q-S_{2} Q=2 a$
The Parabolic Mirror
DIAGRAM
Suppose a ray of light comes in parallel to the x -axis and is reflected in a direction equally inclined to the tangent. We prove that it passes through the focus.
Let the parabola have equation
$y^{2}=4 k x$, so $S=(k, 0), \quad P=(x, y)$
$2 y \frac{d y}{d x}=4 k$ so $\frac{d y}{d x}=\frac{2 k}{y}$
thus $\tan \alpha_{1}=\frac{2 k}{y}$.
Now $\tan \alpha_{3}=\frac{y}{x-k}$ and $\alpha_{2}=\alpha_{3}-\alpha_{1}$
So $\tan \alpha_{2}=\tan \left(\alpha_{3}-\alpha_{1}\right)=\frac{\tan \alpha_{3}-\tan \alpha_{1}}{1+\tan \alpha_{3} \tan \alpha_{1}}=\frac{2 k}{y}$ (verify)
so $\alpha_{1}=\alpha_{2}$
So a parallel beam of light will be reflected through the focus.

Parametric equations

Because a curve is one-dimensional we can label the points by means of a single real variable, as in the following examples. Traditionally the letter t is used as the parameter, analogous with the curve being traced out in time.
Examples
i) $x=a+t, \quad y=b+m t$ represents the straight line through (a, b) with slope m.
ii) $x=a \cos t, \quad y=a \sin t$ represents the circle of radius a centred at $(0,0)$. We use $\cos ^{2}+\sin ^{2}=1, \quad t$ corresponds to an angle and so θ is sometimes used.
iii) $x=a \cos t, \quad y=b \sin t$ represents the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ again t represents an angle but not the angle from O to P.
DIAGRAM
iv) to parameterise a hyperbola we need to find $\frac{x}{a}=f(t), \frac{y}{b}=g(t)$ so that $f(t)^{2}-g(t)^{2}=1$
There are several possibilities
a) $\frac{x}{a}=\frac{1}{2}\left(t+\frac{1}{t}\right) \quad \frac{y}{b}=\frac{1}{2}\left(t-\frac{1}{t}\right)$
b) $x=a \sec t \quad y=b \tan t$
c) $\left.\begin{array}{rl}\frac{x}{a} & =\frac{1}{2}\left(e^{t}+e^{-t}\right)=\cosh t \\ \frac{y}{b} & =\frac{1}{2}\left(e^{t}-e^{-t}\right)=\sinh t\end{array}\right\} \begin{aligned} & \text { These are called } \\ & \text { hyperbolic functions. }\end{aligned}$
v) to parameterise the parabola $y^{2}=4 k x$ we use $x=k t^{2}, \quad y=2 k t$ DIAGRAM

As t increases this induces a direction on the curve.
The curve described in the opposite direction can be parameterised by $x=k t^{2} \quad y=-2 k t$.
DIAGRAM

We regard these two as different curves (with the same set of points). It is important to distinguish the direction in many applications.

Polar equation of a conic

We want to find the polar equation of a conic with the origin as focus.
DIAGRAM
DIAGRAM
$P S=e P M \quad \sqrt{x^{2}+y^{2}}=e(x+k(e+1))$
Converting to polars gives
$r=e r \cos \theta+e k(e+1)$
notice that from (1) $e k(e+1)$ is the y -value when $x=0$
DIAGRAM
Write $l=e k(e+1)$. The length $2 l=P P^{\prime} . P P^{\prime}$ is called the latus rectum. l is the semi-latus rectum.
Thus we can write the conic as

$$
\frac{l}{r}=1-e \cos \theta
$$

Note that rotations are easy in polar co-ordinates, so the equation

$$
\frac{l}{r}=1-e \cos (\theta-\alpha)
$$

is a conic having its axis at an angle α with the initial line. Notice that when $\alpha=\pi$ the equation becomes

$$
\frac{l}{r}=1+e \cos \theta
$$

In the case of an ellipse or hyperbola this is equivalent to using the other focus as an origin.
Notice that if $e>1$ we can sometimes have $\frac{l}{r}<0$. Although we normally insist on $r>0$ in polars, in interpreting polar equations it is often convenient to allow $r<0$, meaning r measured in the other direction through O. e.g.

$$
\frac{1}{r}=1-2 \cos \theta
$$

when $\theta=0$ this gives $\frac{1}{r}=-1, r=-1$.
We plot $\theta=0, r=-1$ as the point $(-1,0)$.

When $\cos \theta=\frac{3}{4},\left(\theta \approx 41^{\circ}\right)$ this gives $\frac{1}{r}=-\frac{1}{2}, r=-2$

