Coordinate Geometry

In this section we shall discuss various co-ordinate systems in 2 and 3 dimensions and equations for a variety of curves.

Cartesian coordinates are formed by two sets of parallel lines, usually orthogonal, although not necessarily so. A point is specified by an ordered pair (a, b), and can be thought of as the intersection of the lines $x=a$ and $y=b$.

You will be familiar with many equations and the corresponding curves in rectangular cartesian co-ordinates. You should note that the shape of a curve connected with an equation depends on the co-ordinate system.
e.g. $x^{2}+y^{2}=1$ is the equation of a circle in rectangular cartesian coordinates, but in oblique cartesian co-ordinates it represents an ellipse.

Polar Co-ordinates

This system is set up with an origin O and a direction fixed through O. The co-ordinates of a point P are specified as the distance $O P$ and the angle $O P$ makes with the fixed direction. Thus we have $P(r, \theta)$. Each pair of numbers specifies a point, but without any restrictions on r and θ a point may be assigned more than one set of co-ordinates.
e.g $(1,0)(1,2 \pi)$

If we interpret negative r as reflected through the origin then $(1,0)(-1, \pi)$. In order to achieve uniqueness we make the restriction $r>0$, and we restrict θ to belong to some interval of length 2π. e.g $-\pi<\theta \leq \pi$ is the most common. In describing some curves with more than one point in a given
direction like spirals it is however convenient to relax this restriction on θ. We shall always take $r \geq 0$ however. There is still a slight problem about the origin O. Clearly $r=0$, but what about θ ? We do not specify co-ordinates uniquely for O, but if we obtain $r=0$ from an equation then that will correspond to O.
Just as the grid for Cartesian co-ordinates consists of lines $x=$ const, $y=$ const so the grid for polar co-ordinates consists of $r=$ const (circles centre O), $\theta=$ const (half-lines starting at O).
We can transform from cartesian to polar co-ordinates as follows.

If P has cartesian co-ordinates (x, y) and polar co-ordinates (r, θ) then $r=\sqrt{x^{2}+y^{2}}, \tan \theta=\frac{y}{x}, x=r \cos \theta, y=r \sin \theta$.
Note that it is ambiguous to write $\theta=\tan ^{-1} \frac{y}{x}$

$$
\begin{array}{lll}
\text { since if } & (x, y)=(1,1) & \frac{y}{x}=1
\end{array} \quad \text { and } \theta=\frac{\pi}{4} .
$$

We could write unambiguously $\begin{array}{rll}\theta=\tan ^{-1} \frac{y}{x} & \text { where } \quad 0<\theta<\pi & \text { if } y>0 \\ \text { and } \quad-\pi<\theta<\pi & \text { if } y<0\end{array}$
(We still need the special cases $x=0, y=0$ for completeness) but it is better to draw a diagram as well.

Notice that to say "the point P has co-ordinates (a, b) " is ambiguous out of context. It depends what co-ordinate system we are using.

So rectangular cartesia $\quad P=(2,1)$
60° oblique, same O and xaxis $P=\left(2-\frac{1}{\sqrt{3}}\right)$
polars, same O and xaxis $\quad P=(\sqrt{5}, 0.464)$ (radians)

Some Equations in Polar Co-ordinates

i) Straight line

Since the cartesian equation is $a x+b y+c=0$
we use $x=r \cos \theta, \quad y=r \sin \theta$ to obtain

$$
\begin{equation*}
r(a \cos \theta+b \sin \theta)+c=0 \quad(*) \tag{*}
\end{equation*}
$$

alternatively we have $r \cos (\theta-\alpha)=p$

You should try and relate the two forms of equation above.
Note that the equation $\theta=\frac{\pi}{4}$ does not represent the whole line

You should analyse what happens to the equations $(*)$ when the line passes through O.
ii) circle

A circle centred at O has equation $r=a$.
A circle having O on the circumference and the initial line as diameter.
DIAGRAM
$r=a \cos \theta$
DIAGRAM
$r=a \cos (\theta-\alpha)$
DIAGRAM
Applying the cosine formula to the triangle $P O C$ gives

$$
a^{2}=r^{2}+d^{2}-2 r d \cos (\theta-\alpha) .
$$

Again you should convert from cartesians to polars and try to relate the equations.
We now consider slopes of tangents in polar co-ordinates.

$\tan \phi \approx \frac{P N}{N P^{\prime}} \approx \frac{r \delta \theta}{\delta r} \approx r \frac{d \theta}{d r}$
$P N=O P \sin P O N=r \sin \delta \theta$

$$
\begin{aligned}
P^{\prime} N & =O P^{\prime}-O N=r+\delta r-r \cos \delta \theta=\delta r+r(1-\cos \delta \theta) \\
& =\delta r+r * 2 \sin ^{2} \frac{1}{2} \delta \theta
\end{aligned}
$$

$$
\begin{aligned}
\tan O P^{\prime} P & =\frac{P N}{P^{\prime} N}=\frac{r \sin \delta \theta}{\delta r+r\left(2 \sin ^{2} \frac{1}{2} \delta \theta\right)}=\frac{r * 2 \sin \frac{1}{2} \delta \theta \cos \frac{1}{2} \delta \theta}{\delta r+r\left(2 \sin ^{2} \frac{1}{2} \delta \theta\right)} \\
& =\frac{r \frac{\sin \frac{1}{2} \delta \theta}{\frac{1}{2} \delta \theta} \frac{\delta \theta}{\delta r} \cos \frac{1}{2} \delta \theta}{1+r \frac{\sin \frac{1}{2} \delta \theta}{\frac{1}{2} \delta \theta} \frac{\delta \theta}{\delta r} \sin \frac{1}{2} \delta \theta} \\
& \rightarrow \frac{r * 1 * \frac{d \theta}{d r} * 1}{1+r * 1 * \frac{d \theta}{d r} * 0}=r \frac{d \theta}{d r} \quad \text { as } P^{\prime} \rightarrow P
\end{aligned}
$$

$O P^{\prime} P$ tends to the angle ϕ shown below

$\tan \phi=r \frac{d \theta}{d r}, \quad \cot \phi=\frac{1}{r} \frac{d r}{d \theta}$
You should check through the above in the case when $\delta r<0$, or $O P^{\prime}<O N$.

Example

Consider the circle $r=a \cos \theta$
DIAGRAM
$\frac{d r}{d \theta}=-a \sin \theta \quad \frac{1}{r} \frac{d r}{d \theta}=-\tan \theta=\cot \phi$
So $-\tan \theta=\tan \left(\frac{\pi}{2}-\phi\right)=-\tan \left(\phi-\frac{\pi}{2}\right)$
so $\theta=\phi-\frac{\pi}{2} \quad$ or $\phi=\frac{\pi}{2}+\theta$.
Consider the equation $r=a(1+\cos \theta)$. Because $\cos \theta=\cos (-\theta)$ this curve is symmetrical about the line $\theta=0$. As θ increases from 0 to π, r decreases from $2 a$ to 0 .
$\frac{d r}{d \theta}=-a \sin \theta$
so $r \frac{d \theta}{d r}=-\frac{1+\cos \theta}{\sin \theta}=-\cot \frac{1}{2} \theta=\tan \phi$
$\tan \phi=-\cot \frac{1}{2} \theta=\tan \frac{1}{2}(\pi+\theta)$
so $\phi=\frac{1}{2}(\pi+\theta)$
when $\theta=0, \quad \phi=\frac{1}{2} \pi$ so the curve is at right angles to the initial line.
DIAGRAM
when $\psi=0$, since $\psi=\phi+\theta$ we have $\theta=-\frac{\pi}{3}$.
when $\theta=\frac{\pi}{3}, \quad \psi=\pi$ so the highest points are at $\theta=\frac{\pi}{3}$.

