Question

Decide which of the following series is convergent
(a) $1+x+\frac{x^{2}}{2 \times 1}+\frac{x^{3}}{3 \times 2 \times 1}+\ldots+\frac{x^{n}}{n!}+\ldots$
(b) $100+10+1+0.1+\ldots+10^{2-n}+\ldots$
(c) $1-2+3-4+\ldots+(-1)^{n-1} n+\ldots$
(d) $1+2+3+4+\ldots+n+\ldots$

Answer

(a) $u_{n}=\frac{x^{n}}{n!} \quad S_{n}=1+x+\ldots+\frac{x^{n}}{n!}$
$\frac{u_{n+1}}{u_{n}}=\frac{x}{n+1}<r<1$ for sufficiently large n.
Hence $\lim _{n \rightarrow \infty} S_{n}=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\frac{x^{n+1}}{(n+1)!}+\ldots$
$0<S<1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}\left(1+r+r^{2}+\ldots\right)$ for some n
$\Rightarrow 0<S<S_{n-1}+\frac{x^{n}}{n!(1-r)}$
So this is convergent (by d'Alembert's test)
(b) By the formula with $r=0.1 u_{1}=100$

$$
S=\frac{100}{1-0.1}=\frac{u_{1}}{1-r}=\frac{100}{0.9}
$$

so this series is convergent
(c) $S=1-2+3-4+\ldots \quad S_{n}=\frac{n}{2}\left[1+(-1)^{n} n\right]$
$\left|u_{n}\right|$ does not tend to zero, so S cannot exist Therefore this series is divergent.
(d) $S=1+2+3+4+\ldots . \quad u_{n}=n$
$S_{n}=\frac{n}{2}[1+n] \quad \lim _{n \rightarrow \infty} S_{n}=\infty$
So this series is divergent.

