Question

Decide which of the following series is convergent

(a)
$$1 + x + \frac{x^2}{2 \times 1} + \frac{x^3}{3 \times 2 \times 1} + \dots + \frac{x^n}{n!} + \dots$$

(b)
$$100 + 10 + 1 + 0.1 + \dots + 10^{2-n} + \dots$$

(c)
$$1-2+3-4+...+(-1)^{n-1}n+...$$

(d)
$$1+2+3+4+...+n+...$$

Answer

(a)
$$u_n = \frac{x^n}{n!}$$
 $S_n = 1 + x + \dots + \frac{x^n}{n!}$
$$\frac{u_{n+1}}{u_n} = \frac{x}{n+1} < r < 1 \text{ for sufficiently large } n.$$
Hence $\lim_{n \to \infty} S_n = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{x^{n+1}}{(n+1)!} + \dots$

$$0 < S < 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} (1 + r + r^2 + \dots) \text{ for some } n$$

$$\Rightarrow 0 < S < S_{n-1} + \frac{x^n}{n!(1-r)}$$

So this is convergent (by d'Alembert's test)

(b) By the formula with
$$r = 0.1 u_1 = 100$$

$$S = \frac{100}{1 - 0.1} = \frac{u_1}{1 - r} = \frac{100}{0.9}$$

so this series is convergent

(c)
$$S = 1 - 2 + 3 - 4 + \dots$$
 $S_n = \frac{n}{2}[1 + (-1)^n n]$

 $|u_n|$ does not tend to zero, so S cannot exist Therefore this series is divergent.

(d)
$$S = 1 + 2 + 3 + 4 + \dots$$
 $u_n = n$

$$S_n = \frac{n}{2}[1+n]$$
 $\lim_{n \to \infty} S_n = \infty$

So this series is divergent.