POINT SET TOPOLOGY

- **Definition 1** A topological structure on a set X is a family $\mathcal{O} \subset \mathcal{P}(X)$ called open sets and satisfying
 - (O_1) \mathcal{O} is closed for arbitrary unions
 - (O_2) \mathcal{O} is closed for finite intersections.

Definition 2 A set with a topological structure is a topological space (X, \mathcal{O})

$$\bigcup_{\emptyset} = \bigcup_{i \in \emptyset} E_i = \{ x : x \in E_i \text{ for some } i \in \emptyset \} = \emptyset$$

so \emptyset is always open by (O_1)

$$\bigcap_{\emptyset} = \bigcap_{i \in \emptyset} E_i = \{ x : x \in E_i \text{ for all } i \in \emptyset \} = X$$

so X is always open by (O_2) .

Examples (i) $\mathcal{O} = \mathcal{P}(X)$ the discrete topology.

- (ii) $\mathcal{O}\{\emptyset, X\}$ the indiscrete of trivial topology. These coincide when X has one point.
- (iii) Q=the rational line. O=set of unions of open rational intervals
- **Definition 3** Topological spaces X and X' are homomorphic if there is an isomorphism of their topological structures i.e. if there is a bijection (1-1 onto map) of X and X' which generates a bijection of \mathcal{O} and \mathcal{O} .

e.g. If X and X are discrete spaces a bijection is a homomorphism. (see also Kelley p102 H).

Definition 4 A base for a topological structure is a family $\mathcal{B} \subset \mathcal{O}$ such that every $o \in \mathcal{O}$ can be expressed as a union of sets of \mathcal{B}

Examples (i) for the discrete topological structure $\{x\}_{x \in X}$ is a base.

- (ii) for the indiscrete topological structure $\{\emptyset, X\}$ is a base.
- (iii) For \mathcal{Q} , topologised as before, the set of bounded open intervals is a base.

- (iv) Let $X = \{0, 1, 2\}$ Let $\mathcal{B} = \{(0, 1), (1, 2), (0, 12)\}$. Is this a base for some topology on X? i.e. Do unions of members of X satisfy (O_2) ? $(0, 1) \cap (1, 2) = (1)$ - which is not a union of members of \mathcal{B} , so \mathcal{B} is not a base for any topology on X.
- **Theorem 1** A necessary and sufficient condition for \mathcal{B} to be a base for a topology on $X = \bigcup_{o \in \mathcal{B}} o$ is that for each O' and $O'' \in \mathcal{B}$ and each $x \in O' \cap O'' \exists O \in \mathcal{B}$ such that $x \in O \subset O' \cap O''$.
- **Proof** Necessary: If \mathcal{B} is a base for \mathcal{O} , $O' \cap O'' \in \mathcal{O}$ and if $x \in O' \cap O''$, since $O' \cap O''$ is a union of sets of $\mathcal{B} \exists O \in \mathcal{B}$ such that $x \in O \subset O' \cap O''$.

Sufficient: let \mathcal{O} be the family of unions of sets of \mathcal{B} .

 (O_1) is clearly satisfied.

 (O_2) $(\cup A_i) \cap (\cup B_j) = \cup (A_i \cap B_j)$ so that it is sufficient to prove that the intersection of two sets of \mathcal{B} is a union of sets of \mathcal{B} .

Let $x \in O' \cap O''$. Then $\exists Ox \in \mathcal{B}$ such that $x \in O \ x \subset O' \cap O''$ so that $O' \cap O'' = \bigcup_{x \in O' \cap O''} Ox$.

- **Theorem 2** If S is a non-empty family of sets the family \mathcal{B} of their finite intersections is a base for a topology on \cup_{S}
- **Proof** Immediate verification of O_1 and O_2 . The topology generated in this way is the smallest topology including all the sets of S.
- **Definition 4** A family S is a sub base for a topology if the set of finite intersections is a base for the topology.

e.g. $\{a\infty\}_{a\in Q}$ and $\{(-\infty a)\}_{a\in Q}$ are sub bases for Q

- **Definition 5** If a topology has a countable base it satisfies the second axiom of countability.
- **Definition 6** In a topological space a neighbourhood of a set A is a set which contains an open set containing A. A neighbourhood of a point X is a neighbourhood of $\{x\}$.
- **Theorem 3** A necessary and sufficient condition that a set be open is that it contains (is) a neighbourhood of each of its points.

Proof Necessary: Definition of a neighbourhood

Sufficient: Let $O_A = \bigcup$ open subsets of A. O_A is open (O_1) and $O_A \subset A$.

If $x \in A$ $A \supset$ a neighbourhood of $x \supset$ open set $\ni x$ therefore $x \in O_A$ therefore $A \subset O_A$.

Let V(x) denote the family of neighbourhoods of x. Then V(x) has the following properties.

- (V₁) Every subset of X which contains a member of V(x) is a member of V(x)
- (V_2) V(x) is closed for finite intersections
- (V_3) x belongs to every member of V(x).
- (V₄) If $v \in V(x) \exists W \in V(x)$ such that $v \in V(y)$ for all $y \in W$. (Take W to be an open set $\exists x \text{ and } \subset V$.)
- **Theorem 4** If for each point x of X there is given a family V(x) of subsets of X, satisfying V_{1-4} then \exists a unique topology on X for which the sets of neighbourhoods of each point x are precisely the given V(x). (Hausdorff).
- **Proof** If such a topology exists theorem 3 shows that the open sets must be the O such that for each $x \in O$ $O \in V(x)$ and so there is at most one such topology. Consider the set O so defined.

 (O_1) Suppose $x \in \bigcup O$. Then $x \in \text{some } O' \cap O' \in V(x) \cap O' \subset |cupO|$ so $\bigcup O \in V(x)$.

 (O_2) Suppose $x \in \bigcap_F o \Rightarrow x \in \text{each } O$. each $O \in V(x)$ therefore $\bigcap_F O \in V(x)$ by V_2 .

Now consider the system U(x) of neighbourhoods of x defined by this topology.

- (i) $U(x) \subset V(x)$. Let $U \in U(x)$. Then $U \supset O \ni x$. But $O \in V(x)$ so by $V_1 \ U \in V(x)$.
- (ii) V(x) ⊂ U(x). Let V ∈ V(x). It is sufficient to prove that ∃O ∈ O such that x ∈ O ⊂ V.
 Let O = {y : V ∈ V(y)} x ∈ O since V ∈ V(x).
 O ⊂ V since y ∈ V for all y ∈ O by V₃.
 To prove that O ∈ O it is sufficient to prove that V ∈ V(y) for all y ∈ O.
 If t ∈ O V ∈ V(y) by definition of O therefore ∃W ∈ V(y) such that V ∈ V(z) for all z ∈ W by V − 4.
 Therefore W ⊂ O (definition of O)

Therefore $O \in V(y)$ by V_1 e.g. $R_1 : V(x) =$ sets which contain interval (a, b) a < x < b.

- $(a, b) = (a) \quad \text{sets which contain fitter (a, b) } a < a < b.$
- **Definition 7** A metric for a set X is a function ρ form $X \times X$ to R^+ (non-negative reals) such that
 - $M_1 \ \rho(x, y) = \rho(y, x) \text{ for all } x, y$ $M_2 \ \rho(x, z) \le \rho(x, y) + \rho(y, z) \text{ for all } x, y, z$ $M_3 \ \rho(x, x) = 0 \text{ for all } x.$

This is sometimes called a pseudo metric and for a metric we have

 $(M'_3) \ \rho(x,y) \ge 0, \ = 0 \Leftrightarrow x = y.$

Definition 8 The open r- Ball about $x = \{y : \rho(x, y) < r\}$ and is denoted by B(r, x)

The closed r-ball around $x = \{y : \rho(x, y) \le R\}$ and is denoted by $\overline{B}(r, x)$.

 $V(x) = \{$ sets which contain one of $B\left(\frac{1}{n}, x\right)$ $n = 1, 2, ... \}$ satisfies V_{1-4} and so defines a topology on X. This topology is the metric topology defined on X by ρ .

The development of topology from the neighbourhood point of ve=iew is due to H. Weyl and Hausdorff. That from the open sets aspect is due to Alexandroff and Hopf.

- **Definition 9** The closed sets G of a topological space are the complements of the open sets.
 - (G_1) G is closed for arbitrary intersections
 - (G₂) G is closed for finite unions. \emptyset and X are both closed and open.

Clearly given a family G satisfying G_1 and G_2 the family of complements is a topology for which the closed sets are the sets of G.

Definition 10 a point x is an interior point of a set A if A is a neighbourhood of x.

The set of interior points of A is the interior A^0 of A.

An exterior point of A is an interior point of cA (i.e. \exists a neighbourhood of x which does not meet A, or x is isolated, separated from A.)

Theorem 5 (i) The interior of a set is open and

- (ii) is the largest open subset.
- (iii) A necessary and sufficient condition for a set to be open is that it coincides with its interior.
- **Proof (i)** $x \in A^0 \Rightarrow \exists$ open O such that $x \in O \subset A$. $y \in O \Rightarrow y \in A^0$ therefore $x \in O \subset A^0$ therefore A^0 is a neighbourhood of each of its points and so it is open.
 - (ii) Let $O \subset A \Rightarrow O \subset A^o$ therefore $\bigcup_{O \subset A^0} O \subset A^o$, but A^0 is such an O therefore $\bigcup_{O \subset A} O = A^0$.
 - (iii) Sufficient condition from (i). Necessary condition from (ii). $\overrightarrow{A \cap B} = A^0 \cap B^0$ but $\overrightarrow{A \cup B} \neq A^0 \cup B^0$ e.g. $X = R_1$ with metric topology, A=rationals, B=irrationals. $A^0 = \emptyset \ B^0 = \emptyset$ therefore $A^0 \cup B^0 = \emptyset$. But $A \cup B = R_1$ and so $\overrightarrow{A \cup B} = R_1$. However $A^0 \cup B^0 \subset \overrightarrow{A \cup B}$ always.
- **Definition 11** A point x is adherent to a set A if every neighbourhood of x meets A.

The set of points adherent to a set A is called the adherence (closure) \overline{A} of A.

An adherent point of A is an isolated point of A if there is a neighbourhood of A which contains no point of A other than x; otherwise it is a point of accumulation (limit point) of A.

Examples (i) $A = Q \subset \mathcal{R} \ \overline{A} = R$

- (ii) In a discrete space no set has accumulation points, every point is isolated.
- (iii) In an indiscrete space every non-empty set has X as its adherence.

Theorem 5 (i) The adherence of a set is closed and

- (ii) is the smallest closed set containing the given set
- (iii) A is closed $\Leftrightarrow A = \overline{A} \Leftrightarrow A \supset$ its accumulation points.

$$\begin{array}{rcl} c\overline{A} & = & \overbrace{cA}^{0} \\ cA^{0} & = & \overline{cA} \end{array}$$

Corollary $\overline{\overline{A}} = \overline{A}$ $\overline{A} \cup \overline{B} = \overline{A \cup B}$

Definition 12 The set of accumulation points of A is its derived set A'.

A perfect set is a closed set without isolated points.

Suppose we map $\mathcal{P}(X) \to \mathcal{P}(X)$ where $A \to \overline{A}$ then

- $(C_1) \ \overline{\emptyset} = \emptyset$
- $(C_2) \ A \subset \overline{A}$
- (C₃) $\overline{\overline{A}} \subset \overline{A}$ (with $C_2 \Rightarrow \overline{\overline{A}} = \overline{A}$)
- $(C_4) \ \overline{A \cup B} = \overline{A} \cup \overline{B}.$
- **Theorem 6** If we are given an operation mapping $\mathcal{P}(X)$ into $\mathcal{P}(X)$ which has the properties C_{1-4} then the set of complements of the sets G such that $G = \overline{G}$ is a topology on X for which \overline{AS} is the closure of A for all $A \subset X$ (Kunatowski).
- **Definition 13** The frontier or boundary of a set A is $\overline{A} \cap \overline{cA}$ and is the set of points adherent to A and to cA, or is the set interior to neither A nor cA, or is the set neither interior or exterior to A. It is a closed set.

A set is closed \Leftrightarrow it contains its boundary.

A set is open \Leftrightarrow it is disjoint from its boundary.

Definition 14 A set is dense in X if $\overline{A} = X$.

A is dense in itself if all its points are accumulation point, i.e. $A \subset A'$.

A set is nowhere dense if $c\overline{A}$ is dense i.e. $\overline{A}^0 = \emptyset$.

- **Induced topologies** Given $(X\mathcal{O})$ and $Y \subset X$, can we use \mathcal{O} to get a topology for Y.
- **Theorem 7** $\{Y \cap O\}_{O \in \mathcal{O}}$ is a topology O_Y on Y called the topology induced on Y by $(x\mathcal{O})$

Proof $(O_1) \cup Y \cap O = Y_n \cup O$ $(O_2) \cap_F Y_n O = Y_n \cap_F O$ If $Z \subset Y \subset X$ then \mathcal{O}_Y and \mathcal{O} induce the same topology on Z. A (sub) base \mathcal{B} for \mathcal{O} induces a (sub) base \mathcal{B}_Y for \mathcal{O}_Y . "O open in (relative to)Y" means "O open in (YO_Y). A necessary and sufficient condition that every set open in Y be open in X is that Y be open in X.

Theorem 8 (i) $G \subset Y$ is closed in $Y \Leftrightarrow G = Y \cap G'$ where G' is closed in X.

- (ii) $V_Y(x) = \{Y \cap V\}_{v \in V(x)}$
- (iii) If $z \subset Y \subset X$ then $\overline{Z}_{mY} = Y_n \overline{Z}_{mx}$

Proof (i) G is closed in Y

- $\Leftrightarrow Y \cap cG \text{ is open in } Y$ $\leftrightarrow Y \cap cG = Y \cap O; O \text{ open in } X$ $\Leftrightarrow Y \cap G = Y \cap cO \text{ (take comp. in } Y)$ $\Leftrightarrow G = Y \cap cO$ take G' = cO.
- (ii) $Y \supset U \in V_Y(x)$ $\Leftrightarrow U \supset O \ni x, O \text{ open in } Y$ $\Leftrightarrow U \supset O' \cap Y \ni x O' \text{ open in } X$ $\Leftrightarrow U = V \cap Y \text{ where } V \supset O' \ni x$ i.e. $U = Y \cap V \text{ where } V \in V(x).$
- (iii) $\overline{Z}_{mY} = \bigcap$ closed sets in Y which $\supset Z$ = $\bigcap (Y_{\cap} \text{ closed sets } \supset Z)$ = $Y \cap \bigcap$ closed sets $\supset Z$ = $Y \cap \overline{Z}$

Continuous functions

Definition 15 A map F of a topological space X into a topological space Y is continuous at $x_0 \in X$ if given a neighbourhood V of $f(x_0)$ in $Y \exists$ a neighbourhood U of x_+0 in X such that $f(U) \subset V$.

f is continuous at x_0 if for every neighbourhood V of $f(x_0)$ $f^{-1}(V)$ is a neighbourhood of x_0 .

Theorem 9 If $f: X \to Y$ is continuous at X and $x \in \overline{A}$ then $f(x) \in \overline{f(A)}$

Proof Let $V \in V(f(x_0)$ then $f^{-1}(V) \in V(x)$ therefore $f^{-1}(V) \cap A \neq \emptyset$. Therefore $f(f^{-1}(V)) \cap f(A) \neq f(\emptyset) = \emptyset$.

 $f \circ f^{-1}$ is the identity therefore $V \cap f(A) \neq \emptyset$

Theorem 10 if $f: X \to Y$ is continuous at x_0 and $g: Y \to Z$ is continuous at $f(x_0)$ Then $g \circ f$ is continuous at x_0 .

Proof Let $W \in V(g \circ f(x_0))$ then $g^{-1}(W) \in V(f(x_0))$ $f^{-1} \circ g^{-1}(W) \in V(x_0) \quad (g \circ f)^{-1}(W) \in V(x_0)$

- **Definition 16** A map $f : X \to$ is continuous (on X) if it is continuous at each point of X.
- **Theorem 11** Let $f: X \to Y$. Then the following properties are equivalent.
 - (i) f continuous on X
 - (ii) $f(\overline{A}) \subset \overline{f(A)}$ for all $A \in \mathcal{P}(X)$
 - (iii) the inverse image of a closed set is closed
 - (iv) the inverse image of an open set is open.

Proof (i) \Rightarrow (ii) by theorem 9.

(ii) \Rightarrow (iii) Let G' be closed in Y and $f^{-1}(G') = G$. $f(\overline{G}) \subset \overline{f(G)}$ by (ii) $\subset \overline{G'} = G'$. Therefore $\overline{G} \subset f^{-1}(G') = G \subset \overline{G}$ therefore $\overline{G} = G$ therefore $f^{-1}(G')$ is closed. (iii) \Rightarrow (iv)

$$(\mathrm{III}) \Rightarrow (\mathrm{IV})$$

$$cf^{-1}(A) = f^{-1}(cA) \ A \subset Y$$

$$(\mathrm{III}) = f^{-1}(cA) \ A \subset Y$$

(iv) \Rightarrow (i) Let $x \in Xv \in V(f(x))$.

 $\exists x \in O \subset V \ O \text{ open in } Y. \ f^{-1}(O) \text{ is open in } Y \text{ and contains } x \text{ so is a neighbourhood of } x \text{ in } Xf(f^{-1}(O)) \subset V$

Note The image of an open set under a continuous map is not necessarily open.

e.g. $f : R \to R \ x \mapsto \frac{1}{1+x^2}$ $f(R) = (0 \ 1]$ not open.

Comparison of Topologies

Definition 17 If \mathcal{O}_1 and \mathcal{O}_2 are topologies on a set X, \mathcal{O}_1 is finer than $\mathcal{O}_2(\mathcal{O}_2 \text{ is coarser then } \mathcal{O})$ if $\mathcal{O}_1 \supset \mathcal{O}_2$ (strictly finer if not equal).

[Topologies on X are not necessarily complete]

e.e. $R_1 : \mathcal{O}_1$:usual topology \mathcal{O}_2 : open sets are open sets of \mathcal{O}_1 which contains O and $\{o\}$.

These topologies are not comparable.

Theorem 12 If \mathcal{O}_1 and \mathcal{O}_2 are topologies on X, the following properties are equivalent:

- (i) $\mathcal{O}_1 \supset \mathcal{O}_2$
- (ii) \mathcal{O}_2 closed sets are \mathcal{O}_1 closed
- (iii) $V_1(x) \supset V_2(x)$ for all $x \in X$
- (iv) The identity map $(X \mathcal{O}) \to (X\mathcal{O}_2)$ is continuous.
- (v) $\overline{A}^{(1)} \subset \overline{A}^{(2)}$ for all $A \subset X$

We also have the following qualitative results:

the discrete topology on a set is the finest topology on the set, and the indiscrete is the coarsest.

The finer the topology, the more open sets, closed sets, neighbourhoods of a point, the smaller the adherence, the larger the interior of a set, the fewer the dense sets.

If we refine the topology of X we get more continuous functions. If we refine the topology of Y we get fewer continuous functions.

Final Topologies

Theorem 13 Let X be a set. Let $(Y_i, \mathcal{O}_i = \{O_{ij}\}_{j \in J_i})_{i \in I}$ be a family of topological spaces.

Let $f_i: Y_i \to X$. Let $\mathcal{O} = \{O \subset X : f_i^{-1}(o) \text{ open in } Y_i \text{ for all } i \in I\}.$

Then \mathcal{O} is a topology on X and is the finest for which the f_i are continuous.

If $g: X \to Z$ is a map into a topological space Z, g is continuous from $(X\mathcal{O}) \to Z \Leftrightarrow g \circ f_i$ are all continuous.

Proof \mathcal{O} is non-empty: $f^{-1}(X) = Y_i$

 (O_1) Let $f_i^{-1}(O_k) \in \mathcal{O}_1$, $O_k \in \mathcal{O}$. Then $f_i^{-1}(\cup_k O_k) = \bigcup_K f_i^{-1}(O_k) \in \mathcal{O}_1$ for all i.

 (O_2) Let $f_i^{-1}(O-k) \in \mathcal{O}_i$, $O_k \in \mathcal{O}$. Then $f_i^{-1}(\cap_F O_k) = \cap_F f_i^{-1}(O_k) \in \mathcal{O}_i$ for all i.

A necessary and sufficient condition for f_i to be continuous is that $f_i^{-1}(O)$ be open in Y_i for all *i*. A finer topology than \mathcal{O} will not satisfy this.

Now let $f_i: Y_i \to X \ g: X \to Z \ g \circ f_i: Y_i \to Z$.

The necessary condition is obvious.

Sufficient condition:

 $g: X \to Y$ continuous $\Leftrightarrow g^{-1}(O)$ open in X for all O open in Z.

 $g \circ f_i$ continuous $\Rightarrow g \circ f_i^{-1}(O)$ open in Y_i for all i

 $\Rightarrow f_i^{-1} \circ g^{-1}(o)$ open in Y_i for all i

 $\Rightarrow g^{-1}(O)$ is open in X

We define \mathcal{O} to be the final topology for X, the maps f_i and spaces Y_i .

Examples (i) X a topological space. R is an equivalence relation on X.

 $\phi: X \to \frac{X}{r} = Y \ x \mapsto \dot{x} \ (\text{ class})$

The finest topology on Y such that ϕ is continuous is the quotient topology of that of X by the relation R.

$$f: \frac{X}{R} \to Z \text{ is continuous } \Leftrightarrow f \circ \phi: X \to Z \text{ is continuous}$$

e.g. $X + R_2$
$$\underline{R}: (x_1 \ y_1) \sim (x_2 \ y_2) \Leftrightarrow x_1 = x_2.$$

Then $\frac{X}{\underline{R}} = R$ (isomorphically).

(ii) X a set. $(X\mathcal{O}_i)$ a family of topological spaces. $\phi_i : (X, \mathcal{O}_i \to X \ x \mapsto x$ The final topology on X is the finest topology coarser than all the \mathcal{O}_i .

 \mathcal{O} is called the lower bound of the \mathcal{O}_i . $\mathcal{O} = \cap_i \mathcal{O}_i$

Initial Topologies

Theorem 14 Let X be a set. Let $(Y_i \mathcal{O}_i)_{i \in I}$ be a family of topological spaces. Let $f_i : X \to Y_i$. Let $f_i : X \to Y_i$. Let $S = \{f_i^{-1}(O_{ij})\}_{i \in I, j \in J_i}$.

Then S is a sub-base for a topology \mathcal{J} on X, the coarsest topology for which all the f_i are continuous.

If Z is a topological space $g: Z \to X$ is continuous $\Leftrightarrow f_i \circ g$ continuous for all $i \in I$

Proof S is non-empty, for $\emptyset \in S$.

 $\cup_{s \in S} S = X(-f_i^{-1}(Y_i))$ then use theorem 2.

A necessary and sufficient condition for f_i to be continuous is the $f_i^{-1}(O_{ij})$ be open in \mathcal{J} for all ij.

the rest of the proof is similar to theorem 13.

We define \mathcal{J} as the initial topology for X, the maps f_i and spaces Y_i .

Examples (i) X a set $(Y\mathcal{O})$ a topological space $f: X \to Y$. the initial topology here is called the inverse image of \mathcal{O} .

- (ii) If X ⊂ Y f : X → Y x ↦ x is the canonical injection.
 f⁻¹(A) = A ∩ X and the open sets of the initial topology are the intersections with X of the open sets of Y- we have the induced topology.
- (iii) $(X\mathcal{O}_i) \phi_1 : X \to X \ x \mapsto x.$ The initial topology is the coarsest topology finer than all the \mathcal{O}_i
- (iv) $(X_i \mathcal{O}_i)_{i \in I} X = \prod_{i \in I} X_i$ $\phi_i = \operatorname{proj}_i : X \to X_i \{x_i\}_{i \in I} \mapsto x_i$

the initial topology is the coarsest for which all the projections are continuous and is called the product topology of the \mathcal{O}_i . $(X\mathcal{J})$ is the topological product of the (X_i, \mathcal{O}_1) . The (X_i, \mathcal{O}_i) are the Factor spaces. The open sets of the product topology have as base the finite intersections of sets $\operatorname{proj}_i^{-1}(O_{ij})$ where O_{ij} is open in (X_i, \mathcal{O}_i) .

 $\operatorname{proj}_{i}^{-1}(O_{ij} = \prod_{i \in I} A_i \text{ where } A_u = X_u \ i \neq j, \ A_j = O_{ij} \text{ and the base consists of sets } \prod_{i \in I} A_i \text{ where } A_i = X_i \text{ except for a finite set of } i, \text{ where } A_i \text{ is open in } X_i.$ These are called elementary sets.

 $g: Z \to \prod X_i$ is continuous $\Leftrightarrow \operatorname{proj}_i \circ g$ is continuous for all i i.e. all the co-ordinates are continuous.

Limit Processes Consider the following limit processes:

(i) $\lim_{n \to \infty} a_n$ (ii) $\lim_{x \to a} f(x)$ (iii) $R \int_a^b f(x) dx = \lim \sum (x_{i+1} - x_i) f(\xi_i)$

What have these in common.

- A. A set with some order properties
 - (i) $Z \to R \ n \mapsto a_n$ (ii) $V(a) \to R \ v \mapsto f(v)$ (iii) Nets on $(a \ b) \ N \to I(N, f)$
- **B.** A map of the ordered set into a topological space.
- C. We consider the set of images as we proceed along the order. We now unify all these.

The Theory of Filters (H.CARTAN 1937)

Definition 18 A filter on a set X is a family $\mathcal{F} \subset \mathcal{P}(X)$ such that

- (F_1) $A \in \mathcal{F}$ and $B \supset A \Rightarrow B \in \mathcal{F}$
- (F_2) \mathcal{F} is closed for finite intersections
- $(F_3) \ \emptyset \notin \mathcal{F}.$
- $F_3 \Rightarrow$ every finite A^n in F is non-empty.
- $F_2 \Rightarrow X \in \mathcal{F}$ i.e. \mathcal{F} is non-empty.

Examples (i) $X \neq \emptyset \{x\}$ is a filter on X.

- (ii) $\emptyset \neq A \subset X : \{Y : Y \supset A\}$ is a filter on X.
- (iii) X an infinite set.

The complements of the finite subsets form a filter on X.

- (iv) If X = Z (the positive integers) the filter of (iii) is called the Fréchet filter.
- (v) X a topological space. The set of neighbourhoods of $\emptyset \neq A \subset X$ is a filter. $A = \{x\}$ gives the neighbourhoods of x.

Comparison of Filters

Definition 19 If \mathcal{F} and \mathcal{F}' are filters on a set X and $\mathcal{F} \subset \mathcal{F}'$ we say \mathcal{F} is coarser than \mathcal{F}' , \mathcal{F}' is finer than \mathcal{F} .

Filters are not neccessarily comparable e.g. the filters of neighbourhoods of distinct points in a metric space.

If $\{\mathcal{F}_n\}_{i\in I}$ is a family of filters on X then $\mathcal{F} = \bigcap_{i\in I} \mathcal{F}_i$ is a filter.

- **Definition 20** The intersection of the \mathcal{F}_i is the finest filter coarser than all the \mathcal{F}_i and is the lower bound of the \mathcal{F}_i .
- **Theorem 15** Let S be a system of sets in X. A necessary and sufficient condition that \exists a filter on X containing S is that the finite intersections of members of S be non-empty.
- **Proof** Necessary: Immediate from F_2

Sufficient: Consider the family \mathcal{F} of sets which contain a member of \mathcal{S}' , the set of finite intersections on \mathcal{S} .

 \mathcal{F} satisfies F_1, F_2, F_3 .

Any filter $\supset S$ is finer than \mathcal{F} . \mathcal{F} is the coarsest filter $\supset S$.

 \mathcal{S} is called a system of generators of \mathcal{F} .

- **Corollary 1** \mathcal{F} is a filter on $X, A \subset X$. A necessary and sufficient condition that $\exists \mathcal{F}' \supset \mathcal{F}$ such that $A \in \mathcal{F}'$ is that $F \cap A \neq \emptyset \forall F \in \mathcal{F}$.
- **Corollary 2** A set Φ of filter on (non-empty) X has an upper bound in the set of all filters on $X \Leftrightarrow$ for every finite sequence.

 $\{\mathcal{F}_i\}_{i=1,2,\ldots,n} \subset \Phi$ and every $A_i \in \mathcal{F}_i$ $i = 1, 2, \ldots n \cap A_i \neq \emptyset$.

- Filter Bases If S is a system of generators for \mathcal{F} , \mathcal{F} is not, in general, the set of subsets of X which contain an element of S
- **Theorem 16** Given $\mathcal{B} \subset \mathcal{P}(X)$, a necessary condition that the family of subsets of X which contain an element of \mathcal{B} be a filter is that \mathcal{B} have the properties

 (B_1) The intersection of 2 sets of \mathcal{B} contains a set of \mathcal{B} .

(B₂) \mathcal{B} is not empty; $\emptyset \notin \mathcal{B}$.

Definition 21 A system $\mathcal{B} \subset \mathcal{P}(X)$ satisfying B_1, B_2 is called a base for the filter it generates by Theorem 16.

2 filter bases are equivalent if they generate the same filter.

- **Theorem 17** $\mathcal{B} \subset \mathcal{F}$ is a base for $\mathcal{F} \Leftrightarrow$ each set of \mathcal{F} contains a set of \mathcal{B} .
- **Theorem 18** A necessary and sufficient condition that \mathcal{F}' with base \mathcal{B}' be finer than \mathcal{F} with base \mathcal{B} id $\mathcal{B}' \subset \mathcal{B}$.
- **Examples (i)** Let X be a non-empty partially ordered set (\leq) in which each pair of elements has an upper bound. The sections $\{x : x \geq a\}$ of X form a filter base. The filter it defines is called the filter of sections of X.
 - (ii) X=set of nets on [a, b] $N = (a = x_0 < x_1 < \ldots < x_n = b)$ $N_1 \le N_2$ if $N_1 \subset N_2$. An upper bound for N_1 and N_2 is $N_1 \cup N_2$.
 - (iii) The filter of neighbourhoods of O in R_1 has as bases $\left\{ \left(-\frac{1}{n}, \frac{1}{n} \right) \right\}$, $\left\{ \left[-\frac{1}{n}, \frac{1}{n} \right) \right\} \left\{ (-a, b) \ ab > 0 \right\}$ etc.
 - (iv) In R_2 the squares, discs, ellipses et. centre 0 form bases for the filter of neighbourhoods of 0.

(v) In R_1 {x, |x| > n} is a filter base.

- **Definition 22** A fundamental system of neighbourhoods of a point in a topological space is a base for the filter of neighbourhoods of the point.
- **Definition 23** A space satisfies the first axiom of countability if every point has a countable fundamental system of neighbourhoods.

2nd axiom \Rightarrow 1st axiom

1st axiom \neq 2nd axiom.

e.g. X uncountable, with discrete topology. $\{x\}$ is a base for the neighbourhoods of x and is countable.

Theorem 19 Let \mathcal{F} be a filter on $X \ A \subset X$. A necessary and sufficient condition that $\mathcal{F}_A = \{F \cap A\}_{F \in \mathcal{F}}$ be a filter on A is that $F \cap A \neq \emptyset \forall F \in \mathcal{F}$.

If $A \in \mathcal{F} \mathcal{F}_A$ is a filter on A.

Definition 24 \mathcal{F}_A is a filter induced on A by \mathcal{F}

e.g. X a topological space $A \subset X V_A(x)$ is a filter on $A \Leftrightarrow x \subset \overline{A}$

Let $f: X \to Y$ and let \mathcal{F} be a filter on X. Then in general $\{f(F)\}_{F \in \mathcal{F}}$ is not a filter, for F_2 breaks down. But if \mathcal{B} is a filter base for a filter on X then $\{f(B)\}_{B \in \mathcal{B}}$ is a base for a filter i=on Y.

Definition 25 X a topological space. \mathcal{F} a filter on X. x is a limit point of \mathcal{F} if $\mathcal{F} \supset V(x)$ we say \mathcal{F} converges to X.

x is a limit of a filter base \mathcal{B} if the filter with base \mathcal{B} converges to x e.g.

- (i) In R_1 , the filter with base $\left\{\left(-\frac{1}{n}, \frac{1}{n}\right)\right\}$ converges to 0, but that with base $\left\{\left\{x : |x| > n\right\}\right\}$ does not converge.
- (ii)

$$X = \{x, y, z\}$$

$$\mathcal{O} = \{\emptyset, \{x, y\}, \{z\}X\}$$

$$\mathcal{B} = \{\{x, y\}X\}$$

$$V(x) = \{\{x, y\}X\}$$

Therefore \mathcal{B} converges to x, $V(y) = \{(x, y) | X\}$ therefore \mathcal{B} converges to y.

Definition 26 X a topological space.

 \mathcal{B} is a filter base on X. x is adherent to \mathcal{B} if it is adherent to every set of \mathcal{B} .

x is adherent to $\mathcal{B} \Leftrightarrow V \cap B \neq \emptyset \forall V \in V(x), B \in \mathcal{B}.$

Every limit point of a filter is adherent to the filter.

The set of point adherent to a filter is $\cap_{B \in \mathcal{B}} \overline{B}$ and is closed.

- **Definition 27** Let X be a set, Y a topological space. Let $\mathcal{P} : X \to Y$. Let \mathcal{F} be a filter on X.
 - $y \in Y$ is a limit of \mathcal{F} along \mathcal{F} if y is adherent to $\mathcal{P}(\mathcal{F})$
- **Examples (i)** Fréchet \mathcal{F} (of sections of Z) $\alpha : Z \to R$ $n \mapsto a_n$. A set of the filter is a set $\supset \{m : m \ge n\} = F$ $\alpha(F_{\ni}\{a_m : m \ge n\})$. a is a limit of α along $\mathcal{F} \Leftrightarrow a$ is adherent to every set of \mathcal{F} i.e. every $(a - \varepsilon, a + \varepsilon)$ meets every set of \mathcal{F} i.e. $(a - \varepsilon, a + \varepsilon) \cap \{a_m : m \ge n\} \neq \emptyset$ for all n.

(ii) X a topological space, Y a topological space. $\bigvee : X \to Y. V(a)$ is the filter of neighbourhoods of $a \in X$. In this case we write $y = \lim_{x \to a} \mathcal{P}(x)$ instead of $\lim_{x \to a} \mathcal{P}$.

Theorem 20 X, Y topological spaces.

 $\mathcal{P}: X \to Y$ continuous at $a \in Y \Leftrightarrow \lim_{x \to a} \mathcal{P}(x) = \mathcal{P}(a).$

Proof $\lim_{x \to a} \mathcal{P}(x) = \mathcal{P}(a) \Leftrightarrow \text{given } u \in U(\mathcal{P}(a)) \exists V \in V(a) \text{ such that } \mathcal{P}(V) \subset U.$

let X, Y be topological spaces. Let $A \subset X$ and let $a \in \overline{A}$. Let $f : A \to Y$. Let $\mathcal{F} = V_A(a) = \{A \cap V\}_{v \in V(a)}$.

We write $\lim_{x \to a, x \in A} f(x)$ instead of $\lim_{\mathcal{F}} f$.

Definition 28 $\lim_{x \to a, x \in A} f(x)$ is a limit of f at a relative to A.

Theorem 21 Let X be a set and let $\{Y_i\}_{i \in I}$ be a family of topological spaces. Let $f_i : X \to Y_i$.

A filter \mathcal{F} on X converges to $a \in X$ in the initial topology \mathcal{O} on $X \Leftrightarrow$ the filter base $f_i(\mathcal{F})$ converges to $f_i(a) \forall i \in I$. **Proof** Necessary condition: The f_i are continuous by Theorem 20.

Sufficient condition: Let $w \in V(a)$. By definition of $\mathcal{O} \exists \cap_J A_i \subset W$ where $a \in A_i = f^{-1}(O_i)$, O_i open in Y_i and J is a finite set. Since $f_i(\mathcal{F})$ converges to $f_i(a)$ in Y_i $O_i \in f_i(\mathcal{F})$ and $f^{-1}(O_i) \in \mathcal{F}$ so that $\cap_J f^{-1}(O_i) \in \mathcal{F}$ i.e. $V(a) \subset F$.

Corollary A filter \mathcal{F} on a product space $X = \prod_{I} X_i$ converges to $x \Leftrightarrow$ the filter base $pr_i(\mathcal{F})$ converges to $x_i \forall i \in I$.