Question

Show that the centre of mass of a right circular cone of radius r and height h is situated at a distance $\frac{h}{4}$ from the base.
A missile is to be constructed from two parts. The propulsion unit is effectively a cylinder of radius r, height H and density $\frac{\omega}{2}$. The warhead is situated in the nose cone, which is a right circular cone of radius r, height h and density ω.
Show that the centre of mass of the missile is at a distance

$$
\frac{\left(H^{2}+4 H h+h^{2}\right)}{2(3 H+2 h)}
$$

from the base of the propulsion unit.
Hence show that if $H=h=h \frac{5 r}{4}$ and the missile is placed on a perfectly rough slope inclined at an angle of less than $\frac{\pi}{4}$ between its axis of symmetry and the horizontal, it is liable to topple over.
Answer
PICTURE

Density $=\omega$
By symmetry centre of mass is along axis of symmetry of cone at $(\bar{x}, 0)$
Elemental disc: mass $=\pi r(x)^{2} \omega \partial x$
By similar triangles $\frac{r}{h}=\frac{r(x)}{x}$
So mass $=\pi x^{2} \frac{r^{2}}{h^{2}} \omega \partial x$
moment of disc about y axis $=\pi \frac{x^{3} r^{2}}{h^{2}} \omega \partial x$
Balance total moments:

$$
M \bar{x}=\int_{0}^{h} \frac{\pi x^{3} r^{2} \omega}{h^{2}} \partial x
$$

where $M=$ mass of come $=\frac{\pi r^{2} \omega h}{3}$
so $\bar{x}=\frac{\frac{\pi r^{2}}{h^{2}} \omega\left[\frac{x^{4}}{4}\right]_{0}^{h}}{\frac{\pi r^{2} \omega h}{3}}$

$$
\bar{x}=\frac{3 h}{4} ; \text { i.e., } \frac{h}{4} \text { from base }
$$

density $\frac{\omega}{2} \quad$ density ω

Let centre of mass of composite body be at $\left(\bar{x}_{c}, 0\right)$ (by symmetry).
Take moments about y axis:

1. moment cylinder $=\underbrace{\pi r^{2} H \frac{\omega}{2}} \times \underbrace{\frac{H}{2}}$

$$
\text { mass } \quad c \text { of } m
$$

2. moment warhead $=\frac{1}{3} \pi r^{2} h \omega \times\left(H+\frac{h}{4}\right)$
3. moment missile $=(\underbrace{\frac{1}{3} \pi r^{2} h \omega}+\underbrace{\frac{\pi r^{2} H \omega}{2}}) \bar{x}_{c}$
mass warhead mass cylinder

Now (3) $=(1)+(2)$

$$
\begin{aligned}
\Rightarrow\left(\frac{1}{3} \pi r^{2} h \omega+\frac{\pi r^{2} H \omega}{2}\right) \bar{x}_{c} & =\frac{\pi r^{2} H^{2} \omega}{4}+\frac{\pi r^{2} h \omega}{3}\left(H+\frac{h}{4}\right) \\
\Rightarrow \bar{x}_{c} & =\frac{\pi r^{2} \omega\left(\frac{H^{2}}{4}+\frac{h H}{3}+\frac{h^{2}}{12}\right)}{\pi r^{2} \omega\left(\frac{h}{3}+\frac{H}{2}\right)} \\
& =\frac{3 H^{2}+4 H h+h^{2}}{2(2 h+3 H)}
\end{aligned}
$$

as required.
Take $H=h=\frac{5 r}{4} \Rightarrow \bar{x}_{c}=\frac{3 h^{2}+4 h^{2}+h^{2}}{2(2 h+3 h)}=\frac{4 h}{5}=r$
PICTURE

Assuming centre of mass \approx centre of gravity, we have that the critical point of toppling occurs when centre of mass lies just outside base of missile, i.e., $\tan \theta=\frac{r}{r}=1 \Rightarrow \theta=\frac{\pi}{4}$

Any angle greater than this and the missile topples over.

