Question

Given any angle θ in the interval $\left(0, \frac{\pi}{2}\right)$ and any point c in \mathbf{R}, consider the two Euclidean rays R_{1} and R_{2} in \mathbf{H}, originating at c and making angles θ and $\pi-\theta$ with the positive real axis, respectively. Show that the hyperbolic distance between the two points $R_{1} \cap L$ and $R_{2} \cap L$ is independent of L, where L is any horizontal Euclidean line in \mathbf{H}.

Answer

First involve symmetry; since the picture is invariant under reflection through the vertical line through c, which is a consequence of the choice of angles of $R_{1} R_{2}$ with \mathbf{R}, not only are the imaginary points of the two points $R_{1} \cap L$ and $R_{2} \cap L$ equal, but both lie on a circle centred at c. So, the hyperbolic line segment from $p_{1}=R_{1} \cap L$ to $p_{2}=R_{2} \cap L$ is parametrized by

$$
f:[\theta, \pi-\theta] \longrightarrow \mathbf{H}, \quad f(t)=c+p e^{i t} \quad p=\left|c-p_{1}\right|=\left|c-p_{2}\right|
$$

Then, $\operatorname{Im}(f(t))=p \sin (t)$ (since $c \in \mathbf{R}$) and $\mid f^{\prime}(t 0 \mid=p$, and so $\operatorname{length}_{\mathbf{H}}(f)=d_{\mathbf{H}}\left(p_{1} p_{2}\right)=\int_{\theta}^{\pi-\theta} \frac{1}{\sin (t)} d t$, which is independent of L, and in fact depends only on the angles.

