Question

Given any angle θ in the interval $(0, \frac{\pi}{2})$ and any point c in \mathbf{R} , consider the two Euclidean rays R_1 and R_2 in \mathbf{H} , originating at c and making angles θ and $\pi - \theta$ with the positive real axis, respectively. Show that the hyperbolic distance between the two points $R_1 \cap L$ and $R_2 \cap L$ is independent of L, where L is any horizontal Euclidean line in \mathbf{H} .

Answer

First involve symmetry; since the picture is invariant under reflection through the vertical line through c, which is a consequence of the choice of angles of R_1R_2 with **R**, not only are the imaginary points of the two points $R_1 \cap L$ and $R_2 \cap L$ equal, but both lie on a circle centred at c. So, the hyperbolic line segment from $p_1 = R_1 \cap L$ to $p_2 = R_2 \cap L$ is parametrized by

$$f: [\theta, \pi - \theta] \longrightarrow \mathbf{H}, \quad f(t) = c + pe^{it} \quad p = |c - p_1| = |c - p_2|$$

Then, $\operatorname{Im}(f(t)) = p \sin(t)$ (since $c \in \mathbf{R}$) and |f'(t0)| = p, and so length_{**H**} $(f) = d_{\mathbf{H}}(p_1p_2) = \int_{\theta}^{\pi-\theta} \frac{1}{\sin(t)} dt$, which is independent of *L*, and in fact depends only on the angles.