Question

BRIEFLY explain the difference between the Lagrangian and Eulerian dscripitons of flow. A fluid occupies the region $D(t)$, and at a time $t=$) position vectores in $D(0)$ are described by $\underline{X}=(X, Y, Z)$. At a later time t position vectors in the fluid are given by $\underline{x}=\underline{r}(\underline{X}, t)$ where

$$
\begin{aligned}
& x=X+Y t^{2} \\
& y=Y+Y t^{3} \\
& z=Z+2 t Z
\end{aligned}
$$

Determine bothe the Eulerian description of the flow (in the form $\underline{q}=\underline{q}(\underline{x}, t)$ where $\underline{q}=\partial \underline{x} / \partial t$) and the "inverse Lagrangian" description of the flow in the form $\underline{X}=\underline{r}^{-1}(\underline{x}, t)$. Is this an incompressible flow?
Prove that, if $d / d t$ denotes time derivative with \underline{X} fixed and $\partial / \partial t$ denotes a time derivatice with \underline{x} fixed, the the "convective differentiation" formula

$$
\frac{d \underline{g}}{d t}=\frac{\partial \underline{g}}{\partial t}+(\underline{q} \cdot \nabla) \underline{g}
$$

holds for any suitably differentiable vector function \underline{g}.
Verify the convective derivative formula for the motion considered in the first part of the question when

$$
\underline{g}=\left(\begin{array}{c}
x t \\
y t^{2} \\
z
\end{array}\right)
$$

Answer

LAGRANGIAN Move with the flow, hold \underline{X} constant. Seek to determine $\underline{X}=\underline{X}(\underline{x}, t)$.

EULERIAN Fix attention on one spot in space; seek to determine velocity $\underline{q}=\underline{q}(\underline{x}, t)$

$$
\text { Now } \begin{array}{ll}
x & x=X+Y t^{2} \\
z & =Y\left(1+t^{3}\right) \\
z & =Z(1+2 t)
\end{array} \quad \underline{q}=\frac{\partial \underline{x}}{\partial t}=\left.\frac{\partial \underline{x}}{\partial t}\right|_{\underline{X}}=\left(\begin{array}{c}
2 Y t \\
3 t^{2} Y \\
2 Z
\end{array}\right)
$$

But we need $\underline{q}(\underline{x}, t)$ not $\underline{q}(\underline{X}, t)$.
Now also we have
$Y=\frac{y}{1+t^{3}}, \quad Z=\frac{z}{1+2 t}, \Rightarrow X=x-Y t^{2}=x-\frac{y t^{2}}{1+t^{3}}$
Thence

$$
\begin{gathered}
\underline{q}=\left(\begin{array}{c}
2 y t /\left(1+t^{3}\right) \\
3 y t^{2} /\left(1+t^{3}\right) \\
2 z /(1+2 t)
\end{array}\right) \\
\text { rmand }\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{c}
x-y t^{2} /\left(1+t^{3}\right) \\
y /\left(1+t^{3}\right) \\
z /(1+2 t)
\end{array}\right)
\end{gathered}
$$

Now $\operatorname{div}(\underline{q})=0+\frac{3 t^{2}}{1+t^{3}}+\frac{2}{1+2 t} \neq 0$
Now if $\frac{d}{d t}$ means 'fix \underline{X} ' we have, for any suitably differentiable \underline{g},

$$
\begin{aligned}
\frac{\partial \underline{g}}{\partial t} & =\frac{\partial \underline{g}}{\partial t} \frac{\partial t}{\partial t}+\frac{\partial \underline{g}}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial \underline{g}}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial \underline{g}}{\partial z} \frac{\partial z}{\partial t} \\
& =\underline{g}_{t}+\underline{g}_{x} u+\underline{g}_{y} v+\underline{g}_{z} w
\end{aligned}
$$

(where, as usual, $\left.\underline{q}=(u, v, w)=\frac{\partial \underline{x}}{\partial t}\right)$
Thus $\frac{d \underline{g}}{d t}=\underline{g}_{t}+(\underline{q} \cdot \nabla) \underline{q}$
Now we have $\underline{g}_{t}=\left(\begin{array}{c}x \\ 2 y t \\ 0\end{array}\right), \quad(\underline{q} \cdot \nabla) \underline{g}=\left(\begin{array}{c}2 y t^{2} /\left(1+t^{3}\right) \\ 3 y t^{4} /\left(1+t^{3}\right) \\ 2 z /(1+2 t)\end{array}\right)$ and so

$$
\begin{aligned}
\underline{g}_{t}+(\underline{q} \cdot \nabla) \underline{g} & =\left(\begin{array}{c}
x+2 y t^{2} /\left(1+t^{3}\right) \\
2 y t+3 y t^{4} /\left(1+t^{3}\right) \\
2 z /(1+2 t)
\end{array}\right) \\
& =\left(\begin{array}{c}
x+2 y t^{2} /\left(1+t^{3}\right) \\
\left(2 y t+5 y t^{4}\right) /\left(1+t^{3}\right) \\
2 z /((1+2 t)
\end{array}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \underline{g}=\left(\begin{array}{c}
X t+Y t^{3} \\
Y\left(1+t^{3}\right) t^{2} \\
Z(1+2 t)
\end{array}\right) \\
& \Rightarrow \frac{d \underline{g}}{d t}=\left(\begin{array}{c}
X+3 Y t^{2} \\
Y\left(2 t+5 t^{4}\right) \\
2 Z
\end{array}\right) \\
&=\left(\begin{array}{c}
x-\frac{y t^{2}}{1+t^{3}}+\frac{3 y t^{2}}{1+t^{3}} \\
\frac{2 t y}{1+t^{3}}+\frac{5 y t^{4}}{1+t^{3}} \\
\frac{2 z}{1+2 t}
\end{array}\right)=\left(\begin{array}{c}
x+\frac{2 y t^{2}}{1+t^{3}} \\
\frac{2 t y+5 y t^{4}}{1+t^{3}} \\
\frac{2 z}{1+2 t}
\end{array}\right)=\underline{q}_{t}+(\underline{q} \cdot \nabla) \underline{g}
\end{aligned}
$$

