Question

Classify the following differential equations, i.e., state their order and degree. If one is first order, first degree, identify their type. Do NOT attempt to solve them.
(i) $\frac{d x}{d t}=k x$
(ii) $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=10 \sin x$
(iii) $\left(\frac{d y}{d x}\right)^{2}=x+y$
(iv) $\frac{d^{3} y}{d t^{3}}+\left(\frac{d y}{d t}\right)^{2}=e^{x}$
(v) $\cos x\left(\frac{d y}{d x}\right)^{6}+\sin x\left(\frac{d^{2} y}{d x^{2}}\right)^{3}=0$
(vi) $\left(\frac{d^{5} x}{d t^{5}}\right)^{2}=x$

Answer

(i)

$$
\begin{aligned}
& \frac{d x}{d t} \text { is the highest derivative } \Rightarrow \text { order }=1 \\
& \text { power of } \frac{\mathrm{dx}}{\mathrm{dt}} \text { is } 1 \Rightarrow \text { degree }=1 \\
& \frac{d x}{d t}=k x \text { is unvariable separable. }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} \text { is the highest derivative } & \Rightarrow \text { order }=2 \\
\text { power of } \frac{\mathrm{d}^{2} \mathrm{t}}{\mathrm{dx}^{2}} \text { is } 1 & \Rightarrow \text { degree }=1
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\frac{d y}{d x} \text { is the highest derivative } & \Rightarrow \text { order }=1 \\
\text { power of } \frac{\mathrm{dy}}{\mathrm{dx}} \text { is } 2 & \Rightarrow \text { degree }=1
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\frac{d^{3} y}{d t^{3}} \text { is the highest derivative } & \Rightarrow \text { order }=3 \\
\text { power of } \frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dt}^{3}} \text { is } 1 & \Rightarrow \text { degree }=1
\end{aligned}
$$

(v)

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} \text { is the highest derivative } & \Rightarrow \text { order }=2 \\
\text { power of } \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}} \text { is } 3 & \Rightarrow \text { degree }=3
\end{aligned}
$$

(vi)

$$
\begin{aligned}
\frac{d^{5} x}{d t^{5}} \text { is the highest derivative } & \Rightarrow \text { order }=5 \\
\text { power of } \frac{\mathrm{d}^{5} \mathrm{x}}{\mathrm{dt}^{5}} \text { is } 2 & \Rightarrow \text { degree }=2
\end{aligned}
$$

