Question

State, without proof, the Cauchy-Riemann equations giving a necessary condition for a complex function $f(z)=u(x, y)+i v(x, y)$ to be analytic in a region A and state sufficient conditions, involving the Cauchy-Riemann equations, for f to be analytic in A.
Show that in polar co-ordinates the Cauchy-Riemann equations become

$$
r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta}, \quad r \frac{\partial v}{\partial r}=-\frac{\partial u}{\partial \theta} .
$$

Deduce that

$$
(\cos (\log r)+i \sin (\log r)) e^{-\theta}
$$

defines an analytic function in some neighbourhood of each point other than the origin. Write this expression in the form $F(z)$, where $z=r e^{i \theta}$, and discuss the multi-valued nature of F.
Choosing the branch of F for which $F(1)=1$ compute $\int_{\delta} F(z) d z$, where δ is the upper half of the unit circle from $z=1$ to $z=-1$.

Answer

The Cauchy-Riemann equations are $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$ which must hold at each point of A. For sufficiency we need the additional conditions that the partial derivatives should be continuous in A.
Using the chain rule gives, with $x=r \cos \theta y=r \sin \theta$

$$
\begin{aligned}
\frac{\partial u}{\partial r} & =\frac{\partial u}{\partial x} \cos \theta+\frac{\partial u}{\partial y} \sin \theta \\
\frac{\partial u}{\partial \theta} & =-\frac{\partial u}{\partial x} r \sin \theta+\frac{\partial u}{\partial y} r \cos \theta \\
\frac{\partial v}{\partial r} & =\frac{\partial v}{\partial x} \cos \theta+\frac{\partial v}{\partial y} \sin \theta \\
\frac{\partial v}{\partial \theta} & =-\frac{\partial v}{\partial x} r \sin \theta+\frac{\partial v}{\partial y} r \cos \theta
\end{aligned}
$$

So

$$
\begin{aligned}
r \frac{\partial u}{\partial r} & =\frac{\partial u}{\partial x} r \cos \theta+\frac{\partial u}{\partial y} r \sin \theta \\
& =\frac{\partial v}{\partial y} r \cos \theta-\frac{\partial v}{\partial x} r \sin \theta=\frac{\partial v}{\partial \theta}
\end{aligned}
$$

Also

$$
\begin{aligned}
r \frac{\partial v}{\partial r} & =\frac{\partial v}{\partial x} r \cos \theta+\frac{\partial v}{\partial y} r \sin \theta \\
& =-\frac{\partial v}{\partial y} r \cos \theta+\frac{\partial u}{\partial x} r \sin \theta=-\frac{\partial u}{\partial \theta}
\end{aligned}
$$

$u=\cos (\log r) e^{-\theta} \quad v=\sin (\log r) e^{-\theta}$

$$
\begin{aligned}
& \frac{\partial u}{\partial r}=-\sin (\log r) \frac{1}{r} e^{-\theta} \\
& \frac{\partial v}{\partial \theta}=-\sin (\log r) e^{-\theta} \text { so } r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta} \\
& \frac{\partial v}{\partial r}=\cos (\log r) \frac{1}{r} e^{-\theta} \\
& \frac{\partial u}{\partial \theta}=-\cos (\log r) e^{-\theta} \text { so } r \frac{\partial v}{\partial r}=-\frac{\partial u}{\partial \theta}
\end{aligned}
$$

The partial derivatives are continuous except at $z=0$, so the u and v define an analytic function except at $z=0$.
$(\cos (\log r)+i \sin (\log r)) e^{-\theta}=e^{i \log r} e^{-\theta}=e^{i(\log r+i \theta)}=e^{i \log z}=z^{i}$
z^{i} is multi-valued because replacing $\log r$ by $\log r+2 n \pi$ gives the same answer.
On the unit circle $r=1$, so with $F(z)=e^{-\theta}$ we have $F(1)=e^{-0}=1$.
$\int_{\delta} F(z) d z=\int_{0}^{\pi} e^{-\theta} i e^{i \theta} d \theta$
$=\int_{0}^{\pi} i e^{i \theta(1+i)} d \theta=\left[\frac{e^{i \theta(1+i)}}{1+i}\right]_{0}^{\pi}=\frac{e^{i \pi(1+i)}-1}{1+i}=\frac{-e^{-\pi}-1}{1+i}$

