Question

Write down the Euler-Lagrange equation $u(x, y)$ must satisfy on an area S of the x, y-plane if $u(x, y)$ takes prescribed values on the closed curve C bounding S and

$$
I=\int_{S} d S(\nabla u)^{r}=\iint_{S}\left\{u_{x}^{2}+u_{y}^{2}\right\}^{\frac{r}{2}} d x d y
$$

is to be stationary, where r is a given real constant $(\neq 0)$. (It may be assumed that $\nabla u \neq 0$ on S.

Answer
If $I=\iint\left(u_{x}^{2}+u_{y}^{2}\right)^{\frac{r}{2}} d x d y$ the E-L equation is $\frac{\partial F}{\partial u}-\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x}}\right)-\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial u_{y}}\right)=0$ with $F=\left(u_{x}^{2}+u_{y}^{2}\right)^{\frac{r}{2}}$
$\Rightarrow \frac{\partial}{\partial x}\left(r u_{x}\left(u_{x}^{2}+u_{y}^{2}\right)^{\frac{r}{2}-1}\right)+\frac{\partial}{\partial y}\left(r u_{y}\left(u_{x}^{2}+u_{y}^{2}\right)^{\frac{r}{2}-1}\right)=0$
which, after a bit of tedious algebra can be written

$$
\left[(r-1) u_{x}^{2}+u_{y}^{2}\right] u_{x x}+2(r-2) u_{x} u_{y} u_{x y}+\left[(r-1) u_{y}^{2}+u_{x}^{2}\right] u_{y y}=0
$$

