Question

Find the general solution to the first order system of equations

$$
\dot{\mathbf{x}}=A \mathbf{x}
$$

where A is the matrix given by
(a) $\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right)$
(b) $\left(\begin{array}{ll}4 & -3 \\ 8 & -6\end{array}\right)$
(c) $\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right)$
(d) $\left(\begin{array}{cc}1 & 1 \\ 4 & -2\end{array}\right)$
(a) $\left(\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{cc}-1 & -4 \\ 1 & -1\end{array}\right)$
(f) $\left(\begin{array}{cc}5 & -1 \\ 3 & 1\end{array}\right)$
(g) $\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)$

Answer

(a) $A=\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right)$ has eigenvalues $\lambda=-1$ and $\lambda=2$.

When $\lambda=-1$ the eigenvector is $\binom{1}{2}$.
When $\lambda=2$ the eigenvector is $\binom{2}{1}$.
Hence the solution is $\mathbf{x}(t)=c_{1}\binom{1}{2} e^{-t}+c_{2}\binom{2}{1} e^{2 t}$.
(b) $A=\left(\begin{array}{ll}4 & -3 \\ 8 & -6\end{array}\right)$ has eigenvalues $\lambda=0$ and $\lambda=-2$.

When $\lambda=0$ the eigenvector is $\binom{3}{4}$.
When $\lambda=-2$ the eigenvector is $\binom{1}{2}$.
Hence the solution is $\mathbf{x}(t)=c_{1}\binom{3}{4}+c_{2}\binom{1}{2} e^{-2 t}$.
(c) $A=\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right)$ has eigenvalues $\lambda=-1$ and $\lambda=1$.

When $\lambda=-1$ the eigenvector is $\binom{1}{3}$.
When $\lambda=1$ the eigenvector is $\binom{1}{1}$.
Hence the solution is $\mathbf{x}(t)=c_{1}\binom{1}{3} e^{-t}+c_{2}\binom{1}{1} e^{t}$.
(d) $A=\left(\begin{array}{cc}1 & 1 \\ 4 & -2\end{array}\right)$ has eigenvalues $\lambda=-3$ and $\lambda=2$.

When $\lambda=-3$ the eigenvector is $\binom{1}{-4}$.
When $\lambda=2$ the eigenvector is $\binom{1}{1}$.
Hence the solution is $\mathbf{x}(t)=c_{1}\binom{1}{-4} e^{-3 t}+c_{2}\binom{1}{1} e^{2 t}$.
(e) $A=\left(\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right)$ has eigenvalues $\lambda= \pm i$.

When $\lambda=i$ the eigenvector is $\binom{2+i}{1}$.
Hence the corresponding solution is given by

$$
\begin{aligned}
\mathbf{x}(t) & =\binom{2+i}{1} e^{i t} \\
& =\binom{2+i}{1}(\cos t+i \sin t) \\
& =\binom{2 \cos t-\sin t}{\cos t}+i\binom{\cos t+2 \sin t}{\sin t}
\end{aligned}
$$

Since the real and imaginary parts are each solutions to the equation we find the general solution is given by:
$\mathbf{x}(t)=c_{1}\binom{2 \cos t-\sin t}{\cos t}+c_{2}\binom{\cos t+2 \sin t}{\sin t}$.
(f) $A=\left(\begin{array}{cc}-1 & -4 \\ 1 & -1\end{array}\right)$ has eigenvalues $\lambda=-1 \pm 2 i$

When $\lambda=-1+2 i$ the eigenvector is $\binom{2 i}{1}$.
Hence the corresponding solution is given by

$$
\begin{aligned}
\mathbf{x}(t) & =\binom{2 i}{1} e^{-t+2 i t} \\
& =\binom{2 i}{1} e^{-t}(\cos 2 t+i \sin 2 t) \\
& =\binom{-2 e^{-t} \sin 2 t}{e^{-t} \cos 2 t}+i\binom{2 e^{-t} \cos 2 t}{e^{-t} \sin 2 t}
\end{aligned}
$$

Since the real and imaginary parts are each solutions to the equation we find the general solution is given by:
$\mathbf{x}(t)=c_{1}\binom{-2 e^{-t} \sin 2 t}{e^{-t} \cos 2 t}+c_{2}\binom{2 e^{-t} \cos 2 t}{e^{-t} \sin 2 t}$.
(g) $A=\left(\begin{array}{cc}5 & -1 \\ 3 & 1\end{array}\right)$ has eigenvalues $\lambda=2$ and $\lambda=4$.

When $\lambda=2$ the eigenvector is $\binom{1}{3}$.
When $\lambda=4$ the eigenvector is $\binom{1}{1}$.
Hence the solution is $\mathbf{x}(t)=c_{1}\binom{1}{3} e^{2 t}+c_{2}\binom{1}{1} e^{4 t}$.
(h) $A=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)$ has eigenvalues $\lambda=1$ twice.

When $\lambda=1$ the eigenvector is $\mathbf{a}=\binom{2}{1}$.
To find the second solution we need to find a vector \mathbf{b} such that $(A-$ $\lambda I) \mathbf{b}=\mathbf{a}$. Writing $\mathbf{b}=\binom{c}{d}$ we want to solve

$$
\left(\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right)\binom{c}{d}=\binom{2}{1}
$$

One solution to this is $\mathbf{b}=\binom{1}{0}$. Note this solution is not unique and we can add on to it any multiple of \mathbf{a}.

Using \mathbf{a} and \mathbf{b} found above the solution is
$\mathbf{x}(t)=c_{1}\binom{2}{1} e^{t}+c_{2}\left\{\binom{2}{1} t e^{t}+\binom{1}{0} e^{t}\right\}$.

