QUESTION For each of the following quadratic forms, use eigenvalues and eigenvectors to rotate the axes in order to identify what type of conic it represents.
(a) $9 x^{2}-4 x y+6 y^{2}-10 x-20 y-5=0$,
(b) $3 x^{2}-8 x y-12 y^{2}-30 x-64 y=0$,
(c) $4 x^{2}-20 x y+25 y^{2}-15 x-6 y=0$,
(d) $9 x^{2}+12 x y+4 y^{2}-52=0$.

ANSWER In matrix form the equation is
$\mathbf{x}^{t} A \mathbf{x}-\left[\begin{array}{ll}10 & 20\end{array}\right] \mathbf{x}-5=0$
$A=\left[\begin{array}{cc}9 & -2 \\ -2 & 6\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$
The eigenvalues of A are 5 (eigenvector $\operatorname{col}(1,2)$) and 10 (eigenvector $\operatorname{col}(2,-$ $1)$). There are several different orthogonal matrices which can be used, half have det $=1$ so are pure rotation matrices (the others have det=-1 so reverse orientation as well). Any one will do to identify the type of conic. Putting $\mathbf{x}=P \underline{\xi}$ where
$P=\left[\begin{array}{c}\frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \frac{2}{\sqrt{5}}\end{array}\right] \quad \underline{\xi}=\left[\begin{array}{l}\xi \\ \eta\end{array}\right]$
the equation becomes
$10 \xi^{2}+5 \eta^{2}-10 \sqrt{5} \eta-5=0$, or $2 \xi^{2}+\eta^{2}-2 \sqrt{5} \eta-1=0$
It is also possible to get any of

$$
\begin{aligned}
& 2 \xi^{2}+\eta^{2}+2 \sqrt{5} \eta-1=0 \quad 2 \eta^{2}+\xi^{2}-2 \sqrt{5} \xi-1=0 \\
& 2 \eta^{2}+\xi^{2}+2 \sqrt{5} \xi-1=0
\end{aligned}
$$

This may also be written $\frac{\xi^{2}}{3}+\frac{(\eta-\sqrt{5})^{2}}{6}=1$ which is an ellipse.
The equation $3 x^{2}-8 x y-12 y^{2}-30 x-64 y=0$ has eigenvalues 4 (eigenvector $\operatorname{col}(4,-1))$ and -13 (eigenvector $\operatorname{col}(1,4))$. The equation can be transformed to :
$4 \xi^{2}-13 \eta^{2}-\frac{56}{\sqrt{17}} \xi-\frac{286}{\sqrt{17}} \eta=0$
or to $4\left(\xi-\frac{7}{\sqrt{17}}\right)^{2}-13\left(\eta+\frac{11}{\sqrt{17}}\right)^{2}=-81$
which is a hyperbola.
The equation $4 x^{2}-20 x y+25 y^{2}-15 x-6 y=0$ has eigenvalues) (eigenvector $\operatorname{col}(5,2)$) and 29 (eigenvector $\operatorname{col}(-2,5))$. The equation can be transformed to : $29 \xi^{2}-\frac{87}{\sqrt{29}} \eta=0$ and to $\eta^{2}-\frac{3}{\sqrt{29}} \eta=0$
which is a parabola.
The equation $9 x^{2}-20 x y+4 y^{2}-52=0$ has eigenvalues 0 (eigenvector col(2,$3)$) and 29 (eigenvector $\operatorname{col}(3,2)$). The equation can be transformed to :
$\eta^{2}=4$
which is a pair of parallel straight lines.

