Question

Show that the formula of real analysis Log(ab) = Log(a) + Log(b) where $a, b \notin C$, does not always hold in the full complex plane, i.e., when $a, b \in C$. However, show that $Log(ab) = Log(a) + Log(b) + 2n\pi i$ where n is an integer.

Answer

$$Log = log |ab| + iArg(ab)$$

= log |a| + log |b| + iArg(ab)

Now if Arg(ab) = Arg(a) + Log(b) (*) we have

$$Log(ab) = log |a| + iArg(a) + log |b| + iArg(b)$$

= Log(a) + Log(b)

But this only works if (\star) holds.

What happens if
$$\begin{cases} \operatorname{Arg}(a) = \frac{3\pi}{4} \\ \operatorname{Arg}(b) = \frac{3\pi}{4} \end{cases}$$
 say.

$$\operatorname{Arg}(a) + \operatorname{Arg}(b) = \frac{3\pi}{4} + \frac{3\pi}{4} = \frac{3\pi}{2}$$

But $\frac{3\pi}{2}$ doesn't lie in the range on <u>Arg</u> since $-\pi < \text{Arg} \le \pi$ and $\pi < \frac{3\pi}{2}$, so here we need

$$\operatorname{Arg}(ab) = \operatorname{Arg}(a) + \operatorname{Arg}(b) - 2\pi$$

to get the RHS back into $(-\pi, \pi]$

so in general

$$\operatorname{Arg}(ab) = \operatorname{Arg}(a) + \operatorname{Arg}(b) + 2n\pi i$$

n integer (> or < 0)

NB for Arg(a) = Arg(b) = 0 Log(ab) = Log(a) + Log(b) the usual <u>real</u> a, b formula.