Question

Show that the formula of real analysis $\log (a b)=\log (a)+\log (b)$ where $a, b \notin C$, does not always hold in the full complex plane, i.e., when $a, b \in C$. However, show that $\log (\mathrm{ab})=\log (\mathrm{a})+\log (\mathrm{b})+2 \mathrm{n} \pi \mathrm{i}$ where n is an integer.

Answer

$$
\begin{aligned}
\log & =\log |a b|+i \operatorname{Arg}(\mathrm{ab}) \\
& =\log |a|+\log |b|+i \operatorname{Arg}(\mathrm{ab})
\end{aligned}
$$

Now if $\operatorname{Arg}(\mathrm{ab})=\operatorname{Arg}(\mathrm{a})+\log (\mathrm{b})(\star)$ we have

$$
\begin{aligned}
\log (\mathrm{ab}) & =\log |a|+i \operatorname{Arg}(\mathrm{a})+\log |\mathrm{b}|+\mathrm{i} \operatorname{Arg}(\mathrm{~b}) \\
& =\log (\mathrm{a})+\log (\mathrm{b})
\end{aligned}
$$

But this only works if (\star) holds.
What happens if $\left\{\begin{array}{l}\operatorname{Arg}(a)=\frac{3 \pi}{4} \\ \operatorname{Arg}(b)=\frac{3 \pi}{4}\end{array}\right\}$ say.

$$
\operatorname{Arg}(\mathrm{a})+\operatorname{Arg}(\mathrm{b})=\frac{3 \pi}{4}+\frac{3 \pi}{4}=\frac{3 \pi}{2}
$$

But $\frac{3 \pi}{2}$ doesn't lie in the range on $\underline{\operatorname{Arg}}$
since $-\pi<\operatorname{Arg} \leq \pi$ and $\pi<\frac{3 \pi}{2}$, so here we need

$$
\operatorname{Arg}(\mathrm{ab})=\operatorname{Arg}(\mathrm{a})+\operatorname{Arg}(\mathrm{b})-\underbrace{2 \pi}
$$

to get the RHS back into $(-\pi, \pi]$
so in general

$$
\operatorname{Arg}(\mathrm{ab})=\operatorname{Arg}(\mathrm{a})+\operatorname{Arg}(\mathrm{b})+2 \mathrm{n} \pi \mathrm{i}
$$

n integer ($>$ or <0)
NB for $\operatorname{Arg}(\mathrm{a})=\operatorname{Arg}(\mathrm{b})=0 \log (\mathrm{ab})=\log (\mathrm{a})+\log (\mathrm{b})$ the usual real a, b formula.

