Vector Functions and Curves One variable functions

Question

A particle is moving around a circle at constant speed. Given that the equation of the circle is $x^{2}+y^{2}=25$ and that the particle makes one revolution every two seconds, find its acceleration at the point $(3,4)$.
Answer
The position of the particle is given by

$$
\underline{r}=5 \cos (\omega t) \underline{i}+5 \sin (\omega t) \underline{j}
$$

where $\omega=p i$ ensures that \underline{r} has period $2 \pi / \omega=2 s$.
Thus

$$
\underline{a}=\frac{d^{2} \underline{r}}{d t^{2}}=-\omega^{2} \underline{r}=-\pi^{2} \underline{r} .
$$

The acceleration at $(3,4)$ is $-3 \pi^{2} \underline{i}-4 \pi^{2} \underline{j}$.

