Vector Functions and Curves One variable functions

Question

A particle is travelling along the curve $y=x^{2}, z=x^{3}$ and has constant vertical speed $w=d z / d t=3$. When the particle is at the point $(2,4,8)$, find both its velocity and acceleration.
Answer
When the x-coordinate of the particle is x is has position

$$
\underline{r}=x \underline{i}+x^{2} \underline{j}+x^{3} \underline{k},
$$

and so has a velocity

$$
\underline{v}=\frac{d x}{d t}\left[\underline{i}+2 x \underline{j}+3 x^{2} \underline{k}\right] .
$$

As $w=\frac{d z}{d t}=3 x^{2} \frac{d x}{d t}=3$, when $x=2$

$$
\begin{aligned}
12 \frac{d x}{d t} & =3 \\
\text { so } \frac{d x}{d t} & =\frac{1}{4}
\end{aligned}
$$

\Rightarrow

$$
\underline{v}=\frac{1}{4} \underline{i}+\underline{j}+3 \underline{k} .
$$

