Exam Question

Topic: Arc Length
Calculate the length of the curve given by

$$
y=\ln (\cos x) ; \quad\left(-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}\right)
$$

Give your answer both in exact form and also as an approximation rounded to four decimal places, using your calculator.

Solution

$$
L=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

where $f(x)=\ln (\cos x)$
Now $f^{\prime}(x)=\tan x$ and $1+\tan ^{2} x=\sec ^{2} x$.

$$
\begin{aligned}
L & =\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec x d x=[\ln (\sec x+\tan x)]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \\
& =\ln (\sqrt{2}+1)-\ln (\sqrt{2}-1)=\ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right) \\
& =\ln (\sqrt{2}+1)^{2}=\ln (3+2 \sqrt{2})=1.7627(4 \text { d.р. })
\end{aligned}
$$

