Exam Question

Topic: Arc Length
Calculate the length of the curve given by

$$
x=t^{2}, y=2 t,(0 \leq t \leq 1)
$$

Give your answer both in exact form and also as an approximation rounded to four decimal places, using your calculator.

Solution

$$
L=\int_{0}^{1} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t=\int_{0}^{1} \sqrt{4 t^{2}+4} d t=2 \int_{0}^{1} \sqrt{t^{2}+1} d t
$$

Let $t=\sinh u ; d t=\cosh u d u$.

$$
\begin{aligned}
L & =\int_{0}^{\sinh ^{-1} 1} 2 \cosh ^{2} u d u \\
& =\int_{0}^{\sinh ^{-1} 1}(1+\cosh 2 u d u \\
& =\left[u+\frac{\sinh 2 u}{2}\right]_{0}^{\sinh ^{-1} 1} \\
& =[u+\sinh u \cosh u]_{0}^{\sinh ^{-1} 1} \\
& =\sinh ^{-1} 1+1 . \cosh \left(\sinh ^{-1} 1\right) \\
& =\sinh ^{-1} 1+\sqrt{1+\sinh ^{2}\left(\sinh ^{-1} 1\right)} \\
& =\sinh ^{-1} 1+\sqrt{2}=2.2956(4 \text { d.p. })
\end{aligned}
$$

