Question

Let $\left.f_{a} 9 x\right)=a-x^{2}$.
Find:
(i) the value a_{1} of a such that f_{a} has exactly one fixed point,
(ii) the largest value a_{2} of a for which $f-a$ has no 2 -cycle,
(iii) the value a_{3} of a at which an attracting 2-cycle becomes repelling.

Show that the conditions of the period-doubling theorem are satisfied for f_{a}^{2} and also $f_{a_{3}}^{2}$ (at the appropriate points).
Answer
(i) Exactly one fixed point when the parabola $y-a x^{2}$ is tangent to the line $y=x$, i.e. equation $a-x^{2}=x$ has repeated roots. Condition " $b^{2}-4 a c$ " here is $1=-4 a$, i.e. $a_{1}=-\frac{1}{4}$

(ii) $f_{a}^{2}(x)=a-\left(a-x^{2}\right)^{2}$, so fixed points of f_{a}^{2} where $x=a-\left(a-x^{2}\right)^{2}$, that is $x^{4}-2 a x^{2}+x-\left(a-a^{2} 0=0\right.$. Left hand side vanishes at fixed points of f_{a}, so has $\left(x_{2}+x-a\right)$ as a factor: we find LHS $=\left(x^{2}+x-a\right)\left(x^{2}-x+(1-a)\right)$. Thus per-2 points are roots of $x^{2}-x+(1-a)=0$; these are real if and only if $a>\frac{3}{4}=\max a$ with no 2 -cycle.
(iii) If $\{p, q\}$ is a 2-cycle then $\left(f_{a}^{2}\right)^{\prime}(p)=f_{a}^{\prime}(q) f_{a}^{\prime}(p)=4 p q$ since $f_{a}{ }^{\prime}(x)=$ $-2 x$. Thus 2-cycle repelling when $4 q=-1$, i.e. $p q=-\frac{1}{4}$. But $p q=$ product of roots of $\left(x^{2}-x+(1-a)\right)=0$, i.e. $p q=(1-a)$. Therefore 2 -cycle becomes repelling where $-\frac{1}{4}=(1-a)$, i.e. $a_{3}=\frac{5}{4}$.

We have $f_{a}^{\prime}(x)=-2 x$. When $a=a_{2}=\frac{3}{4}$ the fixed points are $x=\frac{1}{2},-\frac{3}{2}$ so $f_{a_{2}}^{\prime}\left(\frac{1}{2}\right)=-1$.
$\overline{\text { Now }\left(f_{a}^{2}\right)(x)=} f_{a}^{\prime}\left(f_{a}(x)\right) \cdot f_{a}^{\prime}(x)=-2\left(a-x^{2}\right) \cdot-2 x$ giving $\left(f_{a}^{2}\right)^{\prime}\left(\frac{1}{2}\right)=2 a-\frac{1}{2}$;
then $\left.\frac{\partial}{\partial a}\left(f_{a}^{2}\right)^{\prime}\left(\frac{1}{2}\right)\right|_{a=a_{2}}=2 \neq 0$.
[Since $2>0$ and $S f_{a}<0$ the bifurcation is supercritical.]
For the 2-cycle $\{p, q\}$ we have $\left(f_{a_{3}}^{2}\right)^{\prime}(p)=-1$ (that's how a_{3} was found). Now $\left(f_{a}^{4}\right)^{\prime}(x)=16 f_{a}^{3}(x) \cdot f_{a}^{2}(x) \cdot f_{a}(x) \cdot x$ (Chain Rule). We have $\frac{\partial}{\partial a} f_{a}(x)=$ 1, $\frac{\partial}{\partial a} f_{a}^{2}(x)=1-2 f_{a}(x), \frac{\partial}{\partial a} f_{a}^{3}(x)=1-2 f_{a}^{2}(x)\left(1-2 f_{a}(x)\right)$ (using $f_{a}^{2}(x)=$ $\left.a-\left(f_{a}(x)\right)^{2}, f_{a}^{3}(x)=a-\left(f_{a}^{2}(x)\right)^{2}\right)$ and if $\{p, q\}$ is a 2-cycle for f_{a} these give $\frac{\partial}{\partial a} f_{a}(p)=1, \frac{\partial}{\partial a} f_{a}^{2}(p)=1-2 q, \frac{\partial}{\partial a} f_{a}^{3}(p)=1-2 p+4 p q$. We use these to differentiate $\left(\overline{f_{a}^{4}}\right)^{\prime}(p)$ as a product:
$\frac{\partial}{\partial a}\left(f_{a}^{4}\right)^{\prime}(p)=16[(1-2 p+4 p q) p q+q(1-2 q) q+q p 1] p$. When $a=a_{3}=\frac{3}{4}$, p and q are the roots of $x^{2}-x-\frac{1}{4}=0$ so $p q=-\frac{1}{4}, p+q=1$. So $\frac{\partial}{\partial a}\left(f_{a}^{4}\right)^{\prime}(p)=16\left[\frac{1}{2} p^{2}-\frac{1}{4} q(1-2 q)-\frac{1}{4} p\right]=8\left(p^{2}+q^{2}\right)-4=8(p+q)^{2}=8 \neq 0$. [Since $8>0$ and $S f_{a}^{2}<0$ (since $S f_{a}<0$) the bifurcation from a 2-cycle to a 4 -cycle at $a=a_{3}$ is supercritical.]

