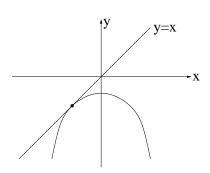
Question Let $f_a 9x$ = $a - x^2$. Find:

- (i) the value a_1 of a such that f_a has exactly one fixed point,
- (ii) the largest value a_2 of a for which f a has <u>no</u> 2-cycle,
- (iii) the value a_3 of a at which an attracting 2-cycle becomes repelling.

Show that the conditions of the period-doubling theorem are satisfied for f_a^2 and also $f_{a_3}^2$ (at the appropriate points).

Answer

(i) Exactly one fixed point when the parabola $y - ax^2$ is tangent to the line y = x, i.e. equation $a - x^2 = x$ has repeated roots. Condition " $b^2 - 4ac$ " here is 1 = -4a, i.e. $a_1 = -\frac{1}{4}$



- (ii) $f_a^2(x) = a (a x^2)^2$, so fixed points of f_a^2 where $x = a (a x^2)^2$, that is $x^4 2ax^2 + x (a a^20 = 0)$. Left hand side vanishes at fixed points of f_a , so has $(x_2 + x a)$ as a factor: we find LHS= $(x^2 + x a)(x^2 x + (1 a))$. Thus per-2 points are roots of $x^2 x + (1 a) = 0$; these are real if and only if $a > \frac{3}{4} = \max a$ with no 2-cycle.
- (iii) If $\{p,q\}$ is a 2-cycle then $(f_a^2)'(p) = f_a'(q)f_a'(p) = 4pq$ since $f_a'(x) = -2x$. Thus 2-cycle repelling when 4q = -1, i.e. $pq = -\frac{1}{4}$. But pq = product of roots of $(x^2 x + (1 a)) = 0$, i.e. pq = (1 a). Therefore 2-cycle becomes repelling where $-\frac{1}{4} = (1 a)$, i.e. $\frac{a_3}{4} = \frac{5}{4}$.

We have
$$f'_a(x) = -2x$$
. When $a = a_2 = \frac{3}{4}$ the fixed points are $x = \frac{1}{2}, -\frac{3}{2}$ so

$$\frac{f'_{a_2}\left(\frac{1}{2}\right) = -1}{Now (f^2_a)(x) = f'_a(f_a(x)) \cdot f'_a(x) = -2(a-x^2) \cdot -2x \text{ giving } (f^2_a)'\left(\frac{1}{2}\right) = 2a - \frac{1}{2};$$
then $\frac{\partial}{\partial a}(f^2_a)'\left(\frac{1}{2}\right)\Big|_{a=a_2} = 2 \neq 0.$
[Since 2 > 0 and $Sf_a < 0$ the bifurcation is supercritical.]
For the 2-cycle $\{p,q\}$ we have $(f^2_{a_3})'(p) = -1$ (that's how a_3 was found).
Now $(f^4_a)'(x) = 16f^3_a(x) \cdot f^2_a(x) \cdot f_a(x) \cdot x$ (Chain Rule). We have $\frac{\partial}{\partial a}f_a(x) = 1, \frac{\partial}{\partial a}f^2_a(x) = 1 - 2f_a(x), \frac{\partial}{\partial a}f^3_a(x) = 1 - 2f^2_a(x)(1 - 2f_a(x)))$ (using $f^2_a(x) = a - (f_a(x))^2, f^3_a(x) = a - (f^2_a(x))^2$) and if $\{p,q\}$ is a 2-cycle for f_a these give $\frac{\partial}{\partial a}f_a(p) = 1, \frac{\partial}{\partial a}f^2_a(p) = 1 - 2q, \frac{\partial}{\partial a}f^3_a(p) = 1 - 2p + 4pq$. We use these to differentiate $(f^4_a)'(p)$ as a product:
 $\frac{\partial}{\partial a}(f^4_a)'(p) = 16[(1 - 2p + 4pq)pq + q(1 - 2q)q + qp1]p$. When $a = a_3 = \frac{3}{4}$, p and q are the roots of $x^2 - x - \frac{1}{4} = 0$ so $pq = -\frac{1}{4}$, $p + q = 1$. So $\frac{\partial}{\partial a}(f^4_a)'(p) = 16\left[\frac{1}{2}p^2 - \frac{1}{4}q(1 - 2q) - \frac{1}{4}p\right] = 8(p^2 + q^2) - 4 = 8(p+q)^2 = 8 \neq 0$.
[Since 8 > 0 and $Sf^2_a < 0$ (since $Sf_a < 0$) the bifurcation from a 2-cycle to a 4-cycle at $a = a_3$ is supercritical.]