QUESTION

- (a) Explain two approaches by which linear programming is used to tackle multi-objective linear programming problems.
- (b) Describe three alternative pivoting rules in linear programming, and state the situations for which they are most appropriate.
- (c) From given observations $(x_1, y_1), \ldots, (x_n, y_n)$, it is required to find values of a and b to be used in the linear model y = ax + b. The values of a and b are to be chosen so that

$$\sum_{i=1}^{n} |y_i - ax_i - b|$$

is minimized. Give a linear programming formulation of this problem.

(d) Solve the following linear programming problem using the dual simplex method.

Minimize $z = 15x_1 + 6x_2 + 22x_3$ subject to $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$ $5x_1 + 2x_2 + 7x_3 \ge 7$ $6x_1 + 3x_2 + 5x_3 \ge 9.$

Find all other optimal solutions.

ANSWER

(a) If z_1, \ldots, z_r are the objective functions to be maximised, one approach is to minimize the composite objective

$$\alpha_1 z_1 + \ldots + \alpha_r z_r$$

for suitable weights $\alpha_1, \ldots, \alpha_r$.

Another approach is to evaluate the trade-offs by maximizeing z_1 subject to $z_2 \ge k_2, \ldots, z_r \ge k_r$ for varying values of the constants k_2, \ldots, k_r .

- (b) The standard pivoting rule is to select a pivot column with the smallest (negative) objective coefficient.
 - Bland's smallest subscript rule chooses the pivot column so that the entering variable has the smallest subscript amoung candidates with a negative objective coefficient. If there is a choice (equal ratios) the leaving variable is chosen so that it has the smallest subscript. This rule is used to avoid cycling in degenerate problems.

• The largest increase pivoting rule chooses a pivot column so that the corresponding pivot element gives the largest increase in the objective function. This helps to overcome badly scaled variables.

(c) Minimize $z = u_1 + v_1 + \ldots + u_n + v_n$ subject to $u_0 \ge 0, \ldots u_n \ge 0$ $v_1 \ge 0, \ldots, v_n \ge 0$ $ax_1 + b + u_1 - v_i = y_1$ \vdots $ax_n + b + u_n - v_n = y_n$

(d) Introduce slack variables $s_1 \ge 0$, $s_2 \ge 0$, and maximize z' = z

Basic	z'	x_1	x_2	x_3	s_1	s_2	
s_1	0	-5	-2	-7	1	0	-7
s_2	0	-6	-3	-5	0	1	-9
	1	15	6	22	0	0	0
Ratio		$\frac{5}{2}$	2	$\frac{22}{5}$			
Basic	z'	x_1	x_2	x_3	s_1	s_2	2
s_1	0	-1	0	$-\frac{11}{3}$	1	_	$\frac{2}{3}$ -1
x_2	0	2	1	$\frac{5}{3} * 0$	$-\frac{1}{3}$	3	
	1	3	0	12	0	2	-18
Ratio		3		$\frac{36}{5}$		3	
Basic	z'	x_1	x_2	x_3	s_1	s_2	
x_1	0	1	0	$\frac{11}{3}$	-1	$\frac{2}{3}$	1
x_2	0	0	1	$-\frac{17}{3}$	2	$-\frac{5}{3}$	1
	1	0	0	1	3	0	-21

Optimal solution is $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, z = 21. To obtain an alternative optimal solution, perform an ordinary simplex iteration.

Basic	z'	x_1	x_2	x_3	s_1	s_2	
s_2	0	$\frac{3}{2}$	0	$\frac{11}{2}$	$-\frac{3}{2}$	1	$\frac{3}{2}$
x_2	0	$\frac{\overline{5}}{2}$	1	$\frac{\overline{7}}{2}$	$-\frac{\overline{1}}{2}$	0	$\frac{\overline{7}}{2}$
	1	0	0	1	3	0	-21

An alternative optimal solution is $x_1 = 0$, $x_2 = \frac{7}{2}$, $x_3 = 0$, z = 21Any optimal solution is of the form

$$(x_1, x_2, x_3) = \lambda(1, 1, 0) + (1 - \lambda)(0, \frac{7}{2}, 0)$$

for $0 \leq \lambda \leq 1$.