QUESTION

(a) Explain two approaches by which linear programming is used to tackle multi-objective linear programming problems.
(b) Describe three alternative pivoting rules in linear programming, and state the situations for which they are most appropriate.
(c) From given observations $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, it is required to find values of a and b to be used in the linear model $y=a x+b$. The values of a and b are to be chosen so that

$$
\sum_{i=1}^{n}\left|y_{i}-a x_{i}-b\right|
$$

is minimized. Give a linear programming formulation of this problem.
(d) Solve the following linear programming problem using the dual simplex method.

$$
\begin{array}{ll}
\text { Minimize } & z=15 x_{1}+6 x_{2}+22 x_{3} \\
\text { subject to } & x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 \\
& 5 x_{1}+2 x_{2}+7 x_{3} \geq 7 \\
& 6 x_{1}+3 x_{2}+5 x_{3} \geq 9
\end{array}
$$

Find all other optimal solutions.
ANSWER
(a) If z_{1}, \ldots, z_{r} are the objective functions to be maximised, one approach is to minimize the composite objective

$$
\alpha_{1} z_{1}+\ldots+\alpha_{r} z_{r}
$$

for suitable weights $\alpha_{1}, \ldots, \alpha_{r}$.
Another approach is to evaluate the trade-offs by maximizeing z_{1} subject to $z_{2} \geq k_{2}, \ldots z_{r} \geq k_{r}$ for varying values of the constants k_{2}, \ldots, k_{r}.
(b) - The standard pivoting rule is to select a pivot column with the smallest (negative) objective coefficient.

- Bland's smallest subscript rule chooses the pivot column so that the entering variable has the smallest subscript amoung candidates with a negative objective coefficient. If there is a choice (equal ratios) the leaving variable is chosen so that it has the smallest subscript. This rule is used to avoid cycling in degenerate problems.
- The largest increase pivoting rule chooses a pivot column so that the corresponding pivot element gives the largest increase in the objective function. This helps to overcome badly scaled variables.
(c)

$$
\begin{array}{ll}
\text { Minimize } & z=u_{1}+v_{1}+\ldots+u_{n}+v_{n} \\
\text { subject to } & u_{0} \geq 0, \ldots u_{n} \geq 0 \\
& v_{1} \geq 0, \ldots, v_{n} \geq 0 \\
& a x_{1}+b+u_{1}-v_{i}=y_{1} \\
& \vdots \\
& a x_{n}+b+u_{n}-v_{n}=y_{n}
\end{array}
$$

(d) Introduce slack variables $s_{1} \geq 0, s_{2} \geq 0$, and maximize $z^{\prime}=z$

Basic	z^{\prime}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	
s_{1}	0	-5	-2	-7	1	0	-7
s_{2}	0	-6	-3	-5	0	1	-9
	1	15	6	22	0	0	0
Ratio		$\frac{5}{2}$	2	$\frac{22}{5}$			
Basic	z^{\prime}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	
s_{1}	0	-1	0	$-\frac{11}{3}$	1	$-\frac{2}{3}$	-1
x_{2}	0	2	1	$\frac{5}{3} 0$	$-\frac{1}{3}$	3	
	1	3	0	12	0	2	-18
Ratio		3		$\frac{36}{5}$		3	
Basic	z^{\prime}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	
x_{1}	0	1	0	$\frac{11}{3}$	-1	$\frac{2}{3}$	1
x_{2}	0	0	1	$-\frac{17}{3}$	2	$-\frac{5}{3}$	1
	1	0	0	1	3	0	-21

Optimal solution is $x_{1}=1, x_{2}=1, x_{3}=0, z=21$. To obtain an alternative optimal solution, perform an ordinary simplex iteration.

Basic	z^{\prime}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	
s_{2}	0	$\frac{3}{2}$	0	$\frac{11}{2}$	$-\frac{3}{2}$	1	$\frac{3}{2}$
x_{2}	0	$\frac{5}{2}$	1	$\frac{7}{2}$	$-\frac{1}{2}$	0	$\frac{7}{2}$
	1	0	0	1	3	0	-21

An alternative optimal solution is $x_{1}=0, x_{2}=\frac{7}{2}, x_{3}=0, z=21$
Any optimal solution is of the form

$$
\left(x_{1}, x_{2}, x_{3}\right)=\lambda(1,1,0)+(1-\lambda)\left(0, \frac{7}{2}, 0\right)
$$

for $0 \leq \lambda \leq 1$.

