QUESTION

- (a) Let (G, *) be a group. Carefully prove the following statement using only the axioms for a group, indicating which axiom you used at each stage of the argument: There is a unique element $h \in G$ such that h * g = g for every element $g \in G$.
- (b) State Lagrange's Theorem and use it to prove that if p and q are prime and G is a group of order pq then every proper subgroup G is cyclic. (A proper subgroup is one not equal to G.)
- (c) Write out the Cayley table for the group of symmetries of an equilateral triangle using the notation s to represent the anticlockwise rotation through π/3 and x, y, z to denote the three reflections in the lines X, Y, Z as marked in figure 1.

Figure 1

- (d) For each of the statements below either show it is true OR give an example to show that it is false:
 - (i) If g and h are elements of a group and both have order n then their product also has order n.
 - (ii) If every proper subgroup of a group G is cyclic then so is G.
 - (iii) Every group of order 8 contains a cyclic subgroup of order 4.

ANSWER

- (a) By the identity axiom there is an element e ∈ G such that e * g = g∀g ∈ G. Now suppose h ∈ G and h * g = g∀g ∈ G. In particular h * h = h. By the inverse axiom there is an element h⁻¹ ∈ G such that h⁻¹ * h = e so h⁻¹ * (h * h) = h⁻¹ * h = e.
 By associativity (h⁻¹ * h) * h = h⁻¹ * (h * h) so e * h = (h⁻¹ * h) * h = h⁻¹ * h = e.
- (b) Lagrange's Theorem

If G is a finite group and H is a subgroup of G then |H| divides |G|.

If |G| = pq with p, q prime then any proper subgroup h < G has |H| = 1, p or q.

Since p, q are prime H is cyclic.

 $h^{-1} * (h * h) = e$ or h = e.

	0	e	s	s^2	x	y	z
	e	e	s	s^2	x	y	z
	s	s	s^2	e	y	z	x
(c)	s^2	s^2	e	s	z	x	y
	x	x	z	y	e	s^2	s
	y	y	x	z	s	e	s^2
	z	z	y	x	s^2	s	e
	OR						
	0	e	s	s^2	x	y	z
	e	e	s	s^2	x	y	z
	s	s	s^2	e	z	x	y
	s^2	s^2	e	s	y	z	x
	x	x	z	y	e	s	s^2
	y	y	z	x	s^2	e	s
	z	z	x	y	s	s^2	e

- (d) (i) False, $x, y \in D_3$ above have order 2, $xy = s^2$ has order 3.
 - (ii) False, Every proper subgroup of D_3 is cyclic but D_3 is not.
 - (iii) False $C_2 \times C_2 \times C_2$