QUESTION

(a) Let $(G, *)$ be a group. Carefully prove the following statement using only the axioms for a group, indicating which axiom you used at each stage of the argument: There is a unique element $h \in G$ such that $h * g=g$ for every element $g \in G$.
(b) State Lagrange's Theorem and use it to prove that if p and q are prime and G is a group of order $p q$ then every proper subgroup G is cyclic. (A proper subgroup is one not equal to G.)
(c) Write out the Cayley table for the group of symmetries of an equilateral triangle using the notation s to represent the anticlockwise rotation through $\pi / 3$ and x, y, z to denote the three reflections in the lines X, Y, Z as marked in figure 1 .

Figure 1
(d) For each of the statements below either show it is true OR give an example to show that it is false:
(i) If g and h are elements of a group and both have order n then their product also has order n.
(ii) If every proper subgroup of a group G is cyclic then so is G.
(iii) Every group of order 8 contains a cyclic subgroup of order 4 .

ANSWER

(a) By the identity axiom there is an element $e \in G$ such that $e * g=g \forall g \in$ G. Now suppose $h \in G$ and $h * g=g \forall g \in G$. In particular $h * h=h$.
By the inverse axiom there is an element $h^{-1} \in G$ such that $h^{-1} * h=e$ so $h^{-1} *(h * h)=h^{-1} * h=e$.
By associativity $\left(h^{-1} * h\right) * h=h^{-1} *(h * h)$ so $e * h=\left(h^{-1} * h\right) * h=$ $h^{-1} *(h * h)=e$ or $h=e$.
(b) Lagrange's Theorem

If G is a finite group and H is a subgroup of G then $|H|$ divides $|G|$.
If $|G|=p q$ with p, q prime then any proper subgroup $h<G$ has $|H|=1, p$ or q.
Since p, q are prime H is cyclic.
(c)

\circ	e	s	s^{2}	x	y	z
e	e	s	s^{2}	x	y	z
s	s	s^{2}	e	y	z	x
s^{2}	s^{2}	e	s	z	x	y
x	x	z	y	e	s^{2}	s
y	y	x	z	s	e	s^{2}
z	z	y	x	s^{2}	s	e

OR

\circ	e	s	s^{2}	x	y	z
e	e	s	s^{2}	x	y	z
s	s	s^{2}	e	z	x	y
s^{2}	s^{2}	e	s	y	z	x
x	x	z	y	e	s	s^{2}
y	y	z	x	s^{2}	e	s
z	z	x	y	s	s^{2}	e

(d) (i) False, $x, y \in D_{3}$ above have order $2, x y=s^{2}$ has order 3 .
(ii) False, Every proper subgroup of D_{3} is cyclic but D_{3} is not.
(iii) False $C_{2} \times C_{2} \times C_{2}$

