QUESTION

- (i) Prove that d(n) is odd if and only if a is the square of some integer m.
- (ii) Prove that if n > 1, then $\sigma(n) \ge n+1$, with equality holding if and only if n is prime.
- (iii) Prove $\sum_{d|n} \frac{1}{d} = \frac{\sigma(n)}{n}$ for every $n \in N$.
- (iv) Describe all positive integers n which satisfy d(n) = 12. (There are infinitely many of them- you need to find a way to describe them all.

ANSWER

- (i) If $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ then $d(n) = (\alpha_1 + 1)(\alpha_2 + 1) \dots (\alpha_k + 1)$. Thus d(n) is odd \Leftrightarrow each α_i is even $\Leftrightarrow n$ is a square.
- (ii) $\sigma(n) = \text{sum of positive divisors of } n$.

Now 1 and n are both positive divisors of n, and are distinct as n > 1. Thus $\sigma(n) \ge 1 + n$, and equality holds if and only if there are no other positive divisors of n, i.e. $\Leftrightarrow n$ is prime.

(iii) Consider $n. \sum_{d|n} \frac{1}{d} = \sum_{d|n} \frac{n}{d}$.

As d varies through the divisors of n, so does $\frac{n}{d}$. Thus the sum $\sum_{d|n} \frac{n}{d}$ is just the sum of the positive divisors of n, so it can be rewritten as $\sum_{d|n} d = \sigma(n)$. Hence $n \sum_{d|n} \frac{1}{d} = \sigma(n)$, so $\sum_{d|n} \frac{1}{d} = \frac{\sigma(n)}{n}$.

(iv) Suppose $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, with each $\alpha_i \ge 1$. Then $d(n) = (\alpha_1 + 1)(\alpha_2 + 1) \dots (\alpha_k + 1) = 12$.

Now each $\alpha_i + 1$ is ≥ 2 , so we wish to find in how many ways we can write 12 as a product of k factors each ≥ 2 . Now $12 = 2^2.3$, so certainly there can't be more than 3 factors, so k = 1, 2 or 3.

If k = 1, then $(\alpha_1 + 1) = 12$, so $\alpha_1 = 11$, and so all n of the form p^{11} satisfy d(n) = 12.

If k = 2, then $(\alpha_1 + 1)(\alpha_2 + 1) = 12$. If we allow the primes p_I to take any values, we may assume that they are arranged in order of increasing α_i , so we may as well assume $|alpha_1 \leq \alpha_2$. Thus the possible solutions are $\alpha_1 = 1$, $\alpha_2 = 5$ and $\alpha_1 = 2$, $\alpha_2 = 3$ and the possible forms of integers *n* given by these are pq^5 and $p^2q^3(p$ and *q* distinct primes).

If k = 3, then $(\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1) = 12$, and taking the p_i to be arranged so that the α_I increase, as above, the only possibility is

 $\alpha_1 = 1, \ \alpha_2 = 1, \ \alpha_3 = 2$, so the relevant *n*'s are pqr^2 , where *p*, *q* and *r* are distinct primes.

Thus our final list, with p, q and r any distinct primes is p^{11}, pq^5, p^2q^3 and pqr^2 .