QUESTION

(i) Prove that $d(n)$ is odd if and only if a is the square of some integer m.
(ii) Prove that if $n>1$, then $\sigma(n) \geq n+1$, with equality holding if and only if n is prime.
(iii) Prove $\sum_{d \mid n} \frac{1}{d}=\frac{\sigma(n)}{n}$ for every $n \in N$.
(iv) Describe all positive integers n which satisfy $d(n)=12$. (There are infinitely many of them- you need to find a way to describe them all.

ANSWER

(i) If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ then $d(n)=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \ldots\left(\alpha_{k}+1\right)$. Thus $d(n)$ is odd \Leftrightarrow each α_{i} is even $\Leftrightarrow n$ is a square.
(ii) $\sigma(n)=$ sum of positive divisors of n.

Now 1 and n are both positive divisors of n, and are distinct as $n>1$. Thus $\sigma(n) \geq 1+n$, and equality holds if and only if there are no other positive divisors of n, i.e. $\Leftrightarrow n$ is prime.
(iii) Consider $n \cdot \sum_{d \mid n} \frac{1}{d}=\sum_{d \mid n} \frac{n}{d}$.

As d varies through the divisors of n, so does $\frac{n}{d}$. Thus the sum $\sum_{d \mid n} \frac{n}{d}$ is just the sum of the positive divisors of n, so it can be rewritten as $\sum_{d \mid n} d=\sigma(n)$. Hence $n \sum_{d \mid n} \frac{1}{d}=\sigma(n)$, so $\sum_{d \mid n} \frac{1}{d}=\frac{\sigma(n)}{n}$.
(iv) Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$, with each $\alpha_{i} \geq 1$. Then $d(n)=\left(\alpha_{1}+\right.$ 1) $\left(\alpha_{2}+1\right) \ldots\left(\alpha_{k}+1\right)=12$.

Now each $\alpha_{i}+1$ is ≥ 2, so we wish to find in how many ways we can write 12 as a product of k factors each ≥ 2. Now $12=2^{2} .3$, so certainly there can't be more than 3 factors, so $k=1,2$ or 3 .
If $k=1$, then $\left(\alpha_{1}+1\right)=12$, so $\alpha_{1}=11$, and so all n of the form p^{11} satisfy $d(n)=12$.
If $k=2$, then $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)=12$. If we allow the primes p_{I} to take any values, we may assume that they are arranged in order of increasing α_{i}, so we may as well assume $\mid a l p h a_{1} \leq \alpha_{2}$. Thus the possible solutions are $\alpha_{1}=1, \alpha_{2}=5$ and $\alpha_{1}=2, \alpha_{2}=3$ and the possible forms of integers n given by these are $p q^{5}$ and $p^{2} q^{3}$ (p and q distinct primes).
If $k=3$, then $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)=12$, and taking the p_{i} to be arranged so that the α_{I} increase, as above, the only possibility is
$\alpha_{1}=1, \alpha_{2}=1, \alpha_{3}=2$, so the relevant n 's are $p q r^{2}$, where p, q and r are distinct primes.
Thus our final list, with p, q and r any distinct primes is $p^{11}, p q^{5}, p^{2} q^{3}$ and $p q r^{2}$.

