Exam Question

Topic: Laplace
The function f is defined in terms of the function g by

$$
f(x)=\int_{0}^{x} g(t) d t
$$

Write down the definition of the Laplace transform of $f(x)$. this gives a repeated integral. Reverse the order of integration and evaluate the inner integral.
Deduce that $L(g)=p L(f)$, where L denotes the Laplace transform.

Solution

$$
\begin{aligned}
L(f(x) & =\int_{0}^{\infty} \mathrm{e}^{-p x} \int_{0}^{x} g(t) d t=\int_{0}^{\infty} d t \int_{t}^{\infty} \mathrm{e}^{-p x} g(t) d t \\
& =\frac{1}{p} \int_{0}^{\infty} \mathrm{e}^{-p t} g(t) d t=\frac{1}{p} L(g) .
\end{aligned}
$$

So $L(g)=p L(f)$.

