QUESTION

(i) Find $\operatorname{HCF}(1147,851)$.
(ii) Find $\operatorname{HCF}(148,1147,851)$
(iii) Find all the integral solutions, x and y, to the linear Diophantine equation

$$
1147 x+851 y=111
$$

ANSWER
(i) We use the Euclidean algorithm

$$
\begin{aligned}
1147 & =1 \times 851+296 \\
851 & =2 \times 296+259 \\
296 & =1 \times 259+37 \\
269=7 \times 37 &
\end{aligned}
$$

So that $\operatorname{HCF}(1147,851)=37$.
(ii) By part (i), $\operatorname{HCF}(148,1147,851)=\operatorname{HCF}(148,37)=37$ since $148=4 \times 37$ and 37 is a prime.
(iii) To solve this we must first observe that $111=3 \times 37$ so that there exists an infinite number of solutions. Next we must find one.

From the Euclidean algorithm in (i), $296=1147-1 \times 851$ and $259=$ $1 \times 851-2 \times(11-1 \times 851)=3 \times 851-2 \times 1147$ so that

$$
37=1147-1 \times 851-(3 \times 851-2 \times 1147)=3 \times 1147-4 \times 851 .
$$

Therefore

$$
11=9 \times 1147-12 \times 851
$$

so that one solution is $x=9, y=-12$ and therefore the general solution is

$$
x=9+\left(\frac{851 n}{37}\right), y=-12-\left(\frac{1147 n}{37}\right)
$$

where n is an arbitrary integer.

