## QUESTION

Find all the solutions of each of the following congruences, expressing your answers in terms of congruence classes, $[x]$ :
(i) $7 x \equiv 29 \bmod (51)$,
(ii) $6\left(x^{5}+x^{3}+3001\right) \equiv 23 \bmod (48)$,
(iii) $x^{2}-x+2 \equiv 0 \bmod (4)$.

ANSWER
(i) Since $\operatorname{HCF}(7,51)=1$ there is exactly one congruence class $[x]$ of solutions. We can find this either by using the Euclidean algorithm to find $u$ and $v$ such that $7 u+51 v=1$ then $[x]=[29 u]$ or we can find the solution as follows. The equation is the same $\bmod (51)$ as $-44 x \equiv-22 \bmod (51)$ which has the same solutions as $2 x \equiv 1 \bmod (510$. The solution to this is $[x]=[26]$, which is correct since $26 \times 7=182=153+29=3 \times 51+29$, as required.
(ii) Since $\operatorname{HCF}(6,48)=6$ does not divide 23 there are no solutions. Put another way, if $6\left(x^{5}+x^{3}+3001\right)=23+48 n$ then taking remainder mod (6) on both sides gives the contradiction that $23 \equiv 0 \bmod (6)$.
(iii) It suffices to try substituting the values $[x]=[0],[1],[2],[3]$ since the congruence class mod (4) of the left hand side depends only on $[x]$. Here is a table:

| $[x]$ | $\left[x^{2}\right]$ | $[x]$ | $\left[x^{2}-x+2\right]$ |
| :---: | :---: | :---: | :---: |
| $[0]$ | $[0]$ | $[0]$ | $[2]$ |
| $[1]$ | $[1]$ | $[1]$ | $[2]$ |
| $[2]$ | $[0]$ | $[2]$ | $[0]$ |
| $[3]$ | $[1]$ | $[3]$ | $[0]$ |

so the solutions are all integers $x \equiv 2,3 \bmod (4)$.

