QUESTION In each of the following case state whether or not the function f of the complex variable $z=x+i y$ is (i) continuous, (ii) differentiable at $z=0$ and give a brief justification for each answer.
(a) $f(z)=|z|$,
(b) $f(z)=x y$
(c) $f(z)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ for $z \neq 0$ and $f(0)=1$.
(d) $f(z)=\frac{\sinh z}{z}, z \neq 0$ and $f(0)=1$.

ANSWER
(a) Continuous at 0 as $\lim _{z \rightarrow 0}|z|=0(=|0|)$. Not differentiable at 0 as $\lim _{h \rightarrow 0} \frac{|h|-|0|}{h}=\frac{|h|}{h}$ and this means that the limit does not exist as it depends on the path we use to reach zero.
(b) Continuous at 0 (same reasons as in (a).) Is is differentiable at 0 as the Cauchy-Riemann equations hold at 0 , and the partial derivatives exist in a neighbourhood of 0 and are continuous there. (Theorem 3.3)
(c) Change to polar coordinates, $x=r \cos \theta, y=r \sin \theta$. Then $f(z)=\cos 2 \theta$. Hence not continuous and hence not differentiable at 0 .
(d) It is easy to see that L'hôpital's rule applies in complex variables as the same proof as in real variables holds and this shows that f is continuous at). It is differentiable at 0 for reasons that will be apparent later in the course. However, you could just use the definition and then we have to examine $\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z}$. This is equal to $\lim _{z \rightarrow 0} \frac{\sinh z-z}{z^{2}}$, and you can find this (and prove it exists) by using L'Hôpital twice. You also need to show that the partial derivatives of f exist in a neighbourhood of 0 and are continuous there.

