QUESTION Using the usual expansion for $\sin (\mathrm{A}+\mathrm{B})$ (how would you prove this for $\mathrm{A}, \mathrm{B}$ complex?)prove that if $z=x+i y$ then

$$
\sin (x+i y)=\sin x \cosh y+i \cos x \sinh y
$$

ANSWER Usual expansion for $\sin (a+b)$ is

$$
\sin (a+b)=\sin A \cos B+\sin B \cos A
$$

(This may be proved for complex $A, B$ by expressing both sides in terms of the exponential function.)Now $\cos i y=\cosh y, \sin i y=i \sinh y$, giving the result.

