QUESTION Find the real and imaginary parts u(x, y) and v(x, y) of the function $f(z) = z^3$. Show directly that

(i) u and v satisfy the Cauchy-Riemann equations and

(b) u and v are harmonic functions.

ANSWER $z^3 = ((x + iy)^3 = x^3 - 3xy^2 + i(3x^2y - y^3)$ so that $u(x, y) = x^3 - 3xy^2$, $v(x, y) = 3x^2y - y^3$ Now the ortial derivatives are $u_x = 3x^2 - 3y^2$, $v_y = 3x^2 - 3y^2$, $u_y = -6xy$, $v_x = 6xy$,

so that u and v satisfy the Cauchy-Riemann equations. Also $u_{xx} + v_{yy} = 6x - 6x = 0$ so u is harmonic and similarly v is harmonic.