QUESTION Find the real and imaginary parts $u(x, y)$ and $v(x, y)$ of the function $f(z)=z^{3}$. Show directly that
(i) u and v satisfy the Cauchy-Riemann equations and
(b) u and v are harmonic functions.

ANSWER $z^{3}=\left((x+i y)^{3}=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)\right.$ so that $u(x, y)=$ $x^{3}-3 x y^{2}, v(x, y)=3 x^{2} y-y^{3}$
Now the ortial derivatives are $u_{x}=3 x^{2}-3 y^{2}, v_{y}=3 x^{2}-3 y^{2}, u_{y}=$ $-6 x y, v_{x}=6 x y$,
so that u and v satisfy the Cauchy-Riemann equations. Also $u_{x x}+v_{y y}=$ $6 x-6 x=0$ so u is harmonic and similarly v is harmonic.

