Question

Consider a sequential reaction

$$
A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C
$$

in which atoms of type A decay into atoms of type B, and atoms of type B decay into atoms of type C, which are stable. Let $a(t), b(t), c(t)$ be the number of atoms at time t of type A, B, C respectively. The numbers of atoms are large, so that they may taken to vary continuously, and the processes may then be modelled by a pair of coupled first order differential equations describing the rates of the decay:

$$
\frac{d a}{d t}=-k_{1} a, \frac{d b}{d t}=k_{1} a-k_{2} b,
$$

together with the information that $a(t)+b(t)+c(t)$ is constant. Assuming that at time $t=0, a(0)=\alpha$ and $b(0)=0=c(0)$ find expressions for the number of atoms of each type which are present at any given time.

Answer
Number of atoms of type A:
Solve $\frac{\partial a}{\partial t}=-K_{1} a$ (Separation of variables)
$a(t)=\lambda e^{-K_{1} t}(\lambda$ constant $)$
Using boundary condition, $a(0)=\alpha$ gives $\lambda=\alpha$
so $\underline{a(t)}=\alpha e^{-K_{1} t}$
Number of atoms of type B:
Solve $\frac{\partial b}{\partial t}=K_{1} a-K_{2} b=K_{1} \alpha e^{-K_{1} t}-K_{2} b$ (from above)
This gives a first order linear differential equation

$$
\frac{\partial b}{\partial t}+K_{2} b=K_{1} \alpha e^{-K_{1} t}
$$

with integrating factor: $I(t)=e^{K_{2} \int d t}=e^{K_{2} t}$
Multiplying equation by integrating factor gives

$$
e^{K_{2} t} \frac{\partial b}{\partial t}+K_{2} b e^{K_{2} t}=K_{1} \alpha e^{\left(K_{2}-K_{1}\right) t}
$$

so

$$
\frac{\partial}{\partial t}\left(b e^{K_{2} t}\right)=K_{1} \alpha e^{\left(K_{2}-K_{1}\right) t}
$$

Integrating gives

$$
b e^{K_{2} t}=\frac{K_{1} \alpha}{K_{2}-K_{1}} e^{\left(K_{2}-K_{1}\right) t}+D
$$

where D is constant.
Boundary conditions $b(0)=0$ gives

$$
0=\frac{K_{1} \alpha}{K_{2}-K_{1}}+D \Rightarrow D=-\frac{K_{1} \alpha}{K_{2}-K_{1}}
$$

Solution is

$$
b(t)=\frac{K_{1} \alpha}{K_{2}-K_{1}}\left(e^{-K_{1} t}-e^{-K_{2} t}\right)
$$

Number of atoms of type C: $c(t)=K-a(t)-b(t)$ for some constant K. Using boundary conditions $a(0)=\alpha, b(0)=0=c(0)$ we have

$$
0=K-\alpha-0 \Rightarrow K=\alpha
$$

so

$$
\begin{aligned}
c(t) & =\alpha-\alpha e^{-K_{1} t}-\frac{K_{1} \alpha}{K_{2}-K_{1}}\left(e^{-K_{1} t}-e^{-K_{2} t}\right) \\
& =\alpha\left(1+\frac{K_{2}}{K_{1}-K_{2}} e^{K_{1} t}-\frac{K_{1}}{K_{1}-K_{2}} e^{-K_{2} t}\right)
\end{aligned}
$$

