Question

Verify the chain rule

$$
D(F \circ G)(p)=D F(q) \cdot D G(p), q=G(p)
$$

where F, G are the maps in question 1 (ii), (i) respectively. Do likewise for the maps in (iii),(ii).
Answer
With F, G as in (ii), (i) respectively we have

$$
F \circ G\left(x_{1}, x_{2}\right)=\left(x_{2}^{2}+2 x_{2}+4 \sin x_{1} x_{2}+3\left(x_{1}-x_{2}\right)^{2}, x_{2}^{2}+8 x_{2}+10 \sin x_{1} x_{2}+6\left(x_{1}-x_{2}\right)^{2}\right)
$$

so

$$
\begin{gathered}
D(F \circ G)\left(x_{1}, x_{2}\right)= \\
\left(\begin{array}{cc}
4 x_{2} \cos x_{1} x_{2}+6\left(x_{1}-x_{2}\right) & 2 x_{2}+2+4 x_{1} \cos x_{1} x_{2}-6\left(x_{1}-x_{2}\right) \\
10 x_{2} \cos x_{1} x_{2}+12\left(x_{1}-x_{2}\right) & 8 x_{2}+8+10 x_{1} \cos x_{1} x_{2}-12\left(x_{1}-x_{2}\right)
\end{array}\right)
\end{gathered}
$$

which is the same as the product of matrices in (ii), (i).
Likewise for F, G as in (iii), (ii) respectively we have

$$
\begin{aligned}
F \circ G\left(x_{1}, x_{2}, x_{3}\right)= & 2\left(x_{1}+2 x_{2}+3 x_{3}\right)^{2}+\left(x_{1}+2 x_{2}+3 x_{3}\right)\left(4 x_{1}+5 x_{2}+6 x_{3}\right) \\
& -\left(4 x_{1}+5 x_{2}+6 x_{3}\right)^{2} \\
= & -10 x_{1}^{2}-7 x_{2}^{2}-19 x_{1} x_{2}-9 x_{2} x_{3}-18 x_{1} x_{3}
\end{aligned}
$$

So

$$
\begin{aligned}
D(F \circ G)\left(x_{1}, x_{2}, x_{3}\right) & =d(F \circ G)\left(x_{1}, x_{2}, x_{3}\right) \\
& =\left(-20 x_{1}-19 x_{2}-18 x_{3},-14 x_{2}-19 x_{1}-9 x_{3},-9 x_{2}-18 x_{1}\right) \\
& =D F\left(y_{1}, y_{2}\right) \cdot D G\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

where $\left(y_{1}, y_{2}\right)=G\left(x_{1}, x_{2}, x_{3}\right)$.
as

$$
\begin{aligned}
D F\left(y_{1}, y_{2}\right)= & \left(4 y_{1}+y_{2}, y_{1}-2 y_{2}\right) \\
= & \left(4\left(x_{1}+2 x_{2}+3 x_{3}\right)+\left(4 x_{1}+5 x_{2}+6 x_{3}\right),\right. \\
& \left.\left(x_{1}+2 x_{2}+3 x_{3}\right)-2\left(4 x_{1}+5 x_{2}+6 x_{3}\right)\right) \\
= & \left(8 x_{1}+13 x_{2}+18 x_{3},-7 x_{1}-8 x_{2}-9 x_{3}\right)
\end{aligned}
$$

and $D G$ as in (ii).

