Question

Write down the Jacobian matrix $D F(p)$ for $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ at a typical point $p \in \mathbf{R}^{n}$:
(i) $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3} F\left(x_{1}, x_{2}\right)=\left(x_{2}^{2}+2 x_{2}, 2 \sin x_{1} x_{2},\left(x_{1}-x_{2}\right)^{2}\right)$
(ii) $F: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2} F\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}+3 x_{3}, 4 x_{1}+5 x_{2}+6 x_{3}\right)$
(iii) $F: \mathbf{R}^{2} \rightarrow \mathbf{R} F\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+x_{1} x_{2}-x_{2}^{2}$.

Answer
(i)

$$
D F(p)=\left(\begin{array}{cc}
0 & 2 x_{2}+2 \\
2 x_{2} \cos x_{1} x_{2} & 2 x_{1} \cos x_{1} x_{2} \\
2\left(x_{1}-x_{2}\right) & -2\left(x_{1}-x_{2}\right)
\end{array}\right), \quad p=\left(x_{1}, x_{2}\right) .
$$

(ii)

$$
D F(p)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right), \quad p=\left(x_{1}, x_{2}, x_{3}\right)
$$

[Here F is linear and is therefore its own derivative: the same at every point p.]
(iii)

$$
D F(p)=\left(4 x_{1}+x_{2}, x_{1}-2 x_{2}\right) \quad(=d F(p)), \quad p=\left(x_{1}, x_{2}\right) .
$$

