Question

For example 3 in the lectures, show that by collapsing the integration contour of the Bromwich inversion integral onto the cut, $f(t)$ can be represented as

$$
f(t)=\frac{A}{\pi} \int_{-1}^{1} d y \frac{\cos (t y)}{\sqrt{1-y^{2}}} .
$$

Answer

We have from lectures:

$$
f(t)=\frac{A}{2 \pi i} \int \frac{e^{p t}}{\left(p^{2}+1\right)^{\frac{1}{2}}} d p
$$

where the contour is given by:
PICTURE

Now for $t>0$ we can make a closed contour with a left hand semicircle, the semicircle contributing 0 in the limit as its radius $\rightarrow \infty$. This closed curve can thus be deformed as shown.
PICTURE
(Since PICTURE contributes zero the integral \uparrow is unchanged by completing the contour. Hence any deformation of the closed contour $=\int$).

This leaves four pieces of curve to consider:
(i) Circle of small radius near $p=+i$. Put $p=i+\zeta=i+\epsilon e^{i \theta}$ to show that as $\epsilon \rightarrow 0$ this gives zero contribution.
(ii) Circle near $p=-i$. Do similar analysis $\left(p=i-\zeta=i-\epsilon e^{i \theta}\right)$ to show it gives zero contribution.
(iii) The line to the right of the cut. As $\epsilon \rightarrow 0$ with $p=i y$ we get

$$
i \int_{-1}^{+1} \frac{e^{i t y}}{\sqrt{1-y^{2}}} d y
$$

Why iy? Cut is along imaginary axis. Therefore expect discontinuity in $\arg (p)$ when g is totally imaginary. So: \rightarrow
(iv) On left hand side put $p=-i y$ to get

$$
-i \int_{+1}^{-1} \frac{e^{-i t y}}{\sqrt{1-y^{2}}} d y
$$

So total is:

$$
\begin{aligned}
f(t) & =\frac{A}{2 \pi i}\left\{i \int_{-1}^{+1} \frac{e^{i t y}}{\sqrt{1-y^{2}}} d y-i \int_{+1}^{-1} \frac{e^{-i t y}}{\sqrt{1-y^{2}}} d y\right\} \\
& =\frac{A}{2 \pi} \int_{-1}^{+1} \frac{d y}{\sqrt{1-y^{2}}}\left[e^{i t y}+e^{-i t y}\right] \\
& =\frac{A}{\pi} \int_{-1}^{+1} \frac{d y}{\sqrt{-y^{2}}} \cos t y
\end{aligned}
$$

