Question

Use the Bromwich inversion integral to find the following:
(i) $L^{-1}\left[b \exp \frac{(-a p)}{\left(p^{2}+b^{2}\right)}\right], a>0, t \neq a$.

What value do you get when $t=a$?
(ii) $L^{-1}\left[p^{n}\right], n=$ positive integer.
(iii) $L^{-1}\left[p^{\frac{7}{2}}\right]$
(iv) $L^{-1}\left[p^{-\alpha}\right], a>0$.

NB Consider al types of α.
(v) $L^{-1}[\exp (-p) \cosh (p)]$
(vi) $L^{-1}\left[\frac{\sqrt{p}}{\left(1-p^{\frac{3}{2}}\right)}\right]$
(The following results should be useful
Gamma function: $L\left[t^{z}\right]=\frac{z!}{p^{(z+1)}}=\frac{\Gamma(z+1)}{p^{(z+1)}}, \Gamma(-n) \rightarrow \infty, n=0$ or positive integer
Delta function: $L[\delta(t-a)]=\exp (-p a), L[\delta(t)]=1)$

Answer

(i) $f(t)=\frac{1}{2 \pi i} \int d p \frac{d e^{-a p} e^{p t}}{p^{2}+b^{2}}$

Simple poles at $\pm b i$.
First take $t>a$. Then you have $e^{p(t-a)}$ as a factor and you need to use a left hand semicircle (where $e^{p(t-a)}$ is exp. small) to complete the contour.
This now includes 2 poles with residues:

$$
\left\{\begin{aligned}
\text { at } \mathrm{p} & =\mathrm{ib} \quad \frac{b e^{i b(t-a)}}{2 i b}=\frac{e^{i b(t-a)}}{2 i} \\
\text { at } \mathrm{p}=-\mathrm{ib} & \frac{b e^{-i b(t-a)}}{-2 i b}=\frac{-e^{-i b(t-a)}}{2 i}
\end{aligned}\right.
$$

Hence $f(t)=\sin b(t-a)$ by residue calculus.
Now take $t>a$. Must complete with right hand semicircle. No poles included now, to $f(t)=0$.
If $t=a$ need to evaluate $J=\int \frac{d p}{p^{2}+b^{2}}=f(a)$
Write it as:

$$
\begin{aligned}
J & =\frac{1}{2 i b} \int\left\{\frac{1}{p-i b}-\frac{1}{p+i b}\right\} d p \\
& =\frac{1}{2 i b}[\log (p-i b)-\log (p+i b)]_{c-i \infty}^{c+i \infty} \\
& =\frac{1}{2 i b}\left[\log \left|\frac{p-i b}{p+i b}\right|+i \arg (p-i b)-i \arg (p+i b)\right]_{c-i \infty}^{c+i \infty} \\
& =0
\end{aligned}
$$

(since $\arg (p-i b)$ with $p=c+i \infty$ is $\frac{\pi}{2}$ etc \cdots)
so finally: $L^{-1}\left[\frac{b e^{-a p}}{\left(p^{2}+b^{2}\right)}\right]=u(t-a) \sin b(t-a)$
(ii) Two methods:
(a) Use Gamma result that $L\left[t^{z}\right]=\frac{\Gamma(z+1)}{p^{(z+1)}}$

Then $\frac{t^{z}}{\Gamma(z+1)}=L^{-1}\left[p^{-(z+1)}\right]$ so putting $z+1=-n$ we have

$$
L^{-1}\left[p^{n}\right]=\frac{t^{-n-1}}{\Gamma(-n)}=\frac{t^{-n-1}}{\infty}=0
$$

(b) Use contour:
$f(t)=\frac{1}{2 \pi i} d p p^{n} e^{p t}$

But no poles anywhere so if you complete to the left the closed contour encloses no poles. The integral therefore $=0$. However we must check the semicircle contribution vanishes:

$$
0=\int+\int \Rightarrow \int=-\int
$$

PICTURE \& \& PICTURE

This does in the left hand part of the plane, since $p^{n} e^{p t} \rightarrow 0$ as $p=\operatorname{Re}^{i \theta} \quad R \rightarrow \infty \quad \theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ i.e., $\operatorname{Re}(p t)<0$ so $f(t)=0$
This is a "non-sensical" result, since obviously $L[0]=0$ and not
 a positive integer in a Laplace transform, we know it vanishes in the inverse transform.
(iii) $f(t)=\frac{1}{2 \pi i} \int d p p^{+\frac{7}{2}} e^{p t}$

Here we can use the Gamma function result:
$L\left[t^{z}\right]=\frac{\Gamma(z+1)}{p^{(z+1)}}$ with $z+1=-\frac{7}{2} \Rightarrow z=-\frac{9}{2}$
Thus $L^{-1}\left[p^{\frac{7}{2}}\right]=\frac{t^{-\frac{9}{2}}}{\Gamma\left(-\frac{9}{2}+1\right)}=\frac{t^{-\frac{9}{2}}}{\Gamma\left(-\frac{7}{2}\right)}$
What's $\Gamma\left(-\frac{7}{2}\right)$? I's not zero (Γ is only zero when $\Gamma(-n) n$ integer >0)
Well $\Gamma(z+1)=z \Gamma(z)$ (know this!)
(cf. factorial: $n!=n(n-1)!$)

$$
\begin{aligned}
& \left(-\frac{7}{2}\right) \Gamma\left(-\frac{7}{2}\right)=\Gamma\left(-\frac{5}{2}\right) \\
& \left(-\frac{5}{2}\right) \Gamma\left(-\frac{5}{2}\right)=\Gamma\left(-\frac{3}{2}\right)
\end{aligned}
$$

Thus

$$
\left.\begin{array}{rl}
\left(-\frac{3}{2}\right) \Gamma\left(-\frac{3}{2}\right) & =\Gamma\left(-\frac{1}{2}\right) \\
\left(-\frac{1}{2}\right) \Gamma\left(-\frac{1}{2}\right) & =\Gamma\left(\frac{1}{2}\right)
\end{array}\right]
$$

Spin off result:
Contour integral method shows that by completing to the right,

$$
\frac{t^{-\frac{9}{2}}}{\Gamma\left(-\frac{7}{2}\right)}=\frac{1}{2 \pi i} \int_{\text {PICTU RE }} d p p^{\frac{7}{2}} e^{p t}
$$

PICTURE

Hence a contour integral representation for $\frac{1}{\Gamma(-z)}$ is

$$
\frac{1}{\Gamma(-z)}=\frac{1}{2 \pi i} \int_{\text {PICTU RE }} d p p^{z} e^{p}
$$

(iv) $L^{-1}\left[p^{-\alpha}\right] \alpha>0$

$$
f(t)=\frac{1}{2 \pi i} \int \frac{e^{p t}}{p^{\alpha}} d p
$$

If α were an integer \Rightarrow pole of order n at $p=0$, complete by a left semicircle where $R e(p t)<0$. The residue gives $f(t)=\frac{t^{n-1}}{(n-1)!}$ (from standard residue of higher order pole formula) If $0<\alpha<1$ move the integral to the contour PICTURE

The small circle around zero gives zero as it shrinks leaving

$$
\begin{aligned}
f(t) & =\frac{1}{2 \pi i}\left[\int_{\infty e^{-i \pi}}^{0}+\int_{0}^{\infty e^{+i \pi}}\right] \frac{e^{p t}}{p^{\alpha}} d p \\
& =\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{e^{-x t}}{x^{\alpha}} d x\left[e^{+i \alpha \pi}-e^{-i \alpha \pi}\right] \\
& =\frac{1}{2 \pi} \alpha!2 i \sin \alpha \pi \\
& =\frac{\alpha!\sin \alpha \pi}{\pi} \\
& =\frac{\Gamma(\alpha+1) \sin \alpha \pi}{\pi}
\end{aligned}
$$

Result.

Spin off: Thus we deduce from (iii) that the identity
$\frac{1}{\Gamma(-z)}=\Gamma(z+1) \frac{\sin z \pi}{\pi} \Rightarrow \Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}$
The "reflection formula" for the Γ-reduction.
(v) $L^{-1}\left[e^{-p} \cosh p\right]$

Now use δ-function result:

$$
\begin{gathered}
L[\delta(t-a)]=e^{-p a} \\
\Rightarrow \\
L^{-1}\left[e^{-p} \cosh p\right]=\frac{1}{2}[\delta(t=0)]+\frac{1}{2}[\delta(t-2)]=\frac{1}{2} \delta(t)+\frac{1}{2} \delta(t-2)
\end{gathered}
$$

This result follows from the contour integral method by deforming contours to complete where $\operatorname{Re}(p t)$ and $\operatorname{Re}(p(t-2))<0$ respectively. The integrals enclose no singularities for $t \neq 0, t \neq 2$ and the semicircle contributions vanish.
Thus the $\int e^{p t} d p$ and $\int e^{p(t-2)} d p$ both $=0$
unless $t=0$ or $t=2$.
When $t=0$ or $t=2$ they don't converge [$\int d p$ is infinite]
so we have δ-function spikes there.

