THEORY OF NUMBERS
 ARITHMETIC FUNCTIONS

Functions defined on the set of natural numbers.
Definition $f(n)$ is multiplicative $\Leftrightarrow f(u v)=f(u) \cdot f(v)$ whenever $(u v)=1$.
Theorem If $f(n)$ is multiplicative then $F(n)=\sum_{d \mid n} f(d)$ is also multiplicative.

Proof Let $(u v)=1$

$$
\begin{aligned}
F(u v) & =\sum_{d \mid u v} f(a) \\
& =\sum_{d_{1} \mid u} \sum_{d_{2} \mid u} f\left(d_{1} d_{2}\right) \\
& =\sum_{d_{1} \mid u} f\left(d_{1}\right) \sum_{d_{2} \mid v} f\left(d_{2}\right) \\
& =F(u) F(v)
\end{aligned}
$$

For every divisor of $u v \exists$ unique d_{1}, d_{2} such that $d_{1}\left|u d_{2}\right| v d_{1} d_{2}=1$.

Definition

$$
\begin{aligned}
& d(n)=\sum_{d \mid n} 1 \\
& \sigma(n)=\sum_{d \mid n} d
\end{aligned}
$$

$d(n)$ and $\sigma(n)$ are both multiplicative. If p is prime the divisors of p^{α} are $1, p, p^{2}, \ldots, p^{\alpha}$ therefore

$$
\begin{aligned}
d\left(p^{\alpha}\right) & =\alpha+1 \\
\sigma\left(p^{\alpha}\right) & =\frac{p^{\alpha+1}-1}{p-1}
\end{aligned}
$$

Hence if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$

$$
\begin{aligned}
d(n) & =\prod_{i=1}^{k}\left(\alpha_{i}+1\right) \\
\sigma(n) & =\prod_{i=1}^{k}\left(\frac{p_{i}^{\alpha_{i}+1}-1}{p_{i}-1}\right)
\end{aligned}
$$

Example For every $\epsilon>0, d(n)=O\left(n^{\epsilon}\right)$.
Let $D(x)=\sum_{n \leq x} d(n)$ for $x \geq 1$.
Theorem $D(x)=x \log x+(2 j-1) x+O\left(x^{\frac{1}{2}}\right)$ for large x, where j is Euler's constant.

Proof We shall first proof that

$$
D(x)=2 \sum_{n \leq x^{\frac{1}{2}}}\left[\frac{x}{n}\right]-\left[x^{\frac{1}{2}}\right]^{2}(x \geq 1)
$$

Now $d(n)=\sum_{u, u \mid n} 1=\sum_{u, v, u v=n} 1$. So

$$
\begin{aligned}
D(x) & =\sum_{u, v u v \leq x} 1 \\
& =\sum_{u, v u_{u \leq x^{\frac{1}{2}}} 1+\sum_{u v \leq x} 1} 1 \\
& =\sum_{u \leq x^{\frac{1}{2}}}\left[\frac{x}{u}\right]+\sum_{v \leq x^{\frac{1}{2}}}\left\{\left[\frac{x}{v}\right]-\left[x^{\frac{1}{2}}\right]\right\} \\
& =2 \sum_{u \leq x^{\frac{1}{2}}}\left[\frac{x}{u}\right]-\left[x^{\frac{1}{2}}\right]^{2} \\
& =2 \sum_{n \leq x^{\frac{1}{2}}}\left(\frac{x}{n}+O(1)\right)-\left(x^{\frac{1}{2}}+O(1)\right)^{2} \\
& =2 x \sum_{n \leq x^{\frac{1}{2}}} \frac{1}{n}+O\left(x^{\frac{1}{n}}-x+O\left(x^{\frac{1}{2}}\right)\right. \\
& =2 x\left(\log x^{\frac{1}{2}}+j+O\left(\frac{1}{x^{\frac{1}{2}}}\right)\right)-x+O\left(x^{\frac{1}{2}}\right. \\
& =x \log x+(2 j-1) x+O\left(x^{\frac{1}{2}}\right)
\end{aligned}
$$

Perfect Numbers A perfect number is one for which $\sigma(n)=2 n$
Theorem (Euclid-Euler) If p is a prime of the from $2^{n}-1$ then then number $2^{n-1} p$ is perfect and conversely every even perfect number is of this form.

Proof Suppose

$$
\begin{aligned}
\sigma(N) & =\sigma\left(2^{n-1} p\right)=\sigma\left(2^{n-1}\right) \sigma(p) \\
& =\left(2_{n}-1\right)(1+p)=p \cdot 2^{n}=2 N
\end{aligned}
$$

Suppose N is an even perfect number. Write $N=2^{n-1} u$ where u is odd, so that $n \geq 2$. Then $2^{n} u=2 N=\sigma(N)=\sigma\left(2^{n-1} u\right)=\sigma\left(2^{n-1}\right) \sigma(u)=$ $\left(2^{n}-1\right) \sigma(u)$
i.e. $\sigma(u)=\frac{2^{n} u}{2^{n}-1}=u+\frac{u}{2^{n}-1}$
$\frac{u}{2^{n}-1}$ is thus an integer, and it divides u.

$$
\begin{aligned}
\sigma(u) & =\text { sum of all divisors of } u \\
& =u+\text { one divisor of } u
\end{aligned}
$$

and so this is the only other divisor of u, therefore $u=2^{n}-1$ and u must be prime.

A number is said to be squarefree if it is not divisible by any square >1.

Möebius function

Möebius inversion formula We define $\mu(1)=1$ and if $n>1$

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{r} & \text { if } n \text { is the product of } r \text { distinct primes } \\
0 & \text { if } n \text { is not squarefree }
\end{array}\right.
$$

It is easy to see that μ is multiplicative.
Theorem

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & (n=1) \\ 0 & n>1\end{cases}
$$

Proof The case $n=1$ is trivial. If $n>1$ write $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$

$$
\begin{aligned}
\sum_{d \mid n} \mu(d) & =\sum_{d \mid p_{1}^{\alpha_{1}}} \mu\left(p_{1}^{\alpha_{1}} \ldots \sum_{d \mid p_{r}^{\alpha_{r}}} \mu\left(p_{r}^{\alpha_{r}}\right)\right. \\
\sum_{d \mid p^{\alpha}} \mu(d) & =1+\mu(p)+\mu\left(p^{2}\right)+\ldots \mu\left(p^{\alpha}\right) \\
& =1-1+0+\ldots+0=0
\end{aligned}
$$

Alternatively

$$
\begin{aligned}
\sum_{d \mid p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}} \mu(d) & =\sum_{d \mid p_{1} \ldots p_{r}} \mu(d) \\
& =1+{ }^{r} c_{1}(-1)+^{r} c_{2}(-1)^{2}+\ldots{ }^{r} c_{r}(-1)^{r} \\
& =(1-1)^{r}=0
\end{aligned}
$$

Theorem Given $g(n)$ defined on the natural numbers define $f(n)=\sum_{d \mid n} g(d)$ then $g(n)=\sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) f(d)$
Proof

$$
\begin{aligned}
\sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right) & =\sum_{d \mid n} \mu(d) \sum_{t \left\lvert\, \frac{n}{d}\right.} g(t) \\
& =\sum_{t \mid n} g(t) \underbrace{\sum_{d \left\lvert\, \frac{n}{t}\right.} \mu(d)} \\
& =\begin{array}{c}
1 \quad \text { if } t=n \\
0 \quad \text { otherwise }
\end{array} \\
& =g(n)
\end{aligned}
$$

Theorem Suppose $G(x)$ is defined for $x \geq 1$. Define $F(x)=\sum_{n \leq x} G\left(\frac{x}{n}\right) x \geq$ 1
Then $G(x)=\sum_{n \leq x} \mu(n) F\left(\frac{x}{n}\right)$

Proof

$$
\begin{aligned}
\sum_{n \leq x} \mu(n) F\left(\frac{x}{n}\right) & =\sum_{n \leq x} \mu(n) \sum_{m \leq \frac{x}{n}} G\left(\frac{x}{m n}\right) \\
& =\sum_{u \leq x} G\left(\frac{x}{u}\right) \sum_{m, n m n=u} \mu(n) \\
& =\sum_{u \leq x} G\left(\frac{x}{u}\right) \sum_{n \mid u} \mu(n) \\
& =G(x)
\end{aligned}
$$

Corollary $[x]=\sum_{n \leq x} 1$ therefore $1=\sum_{n \leq x} \mu(n)\left[\frac{x}{n}\right]$

Euler's function

$$
\phi(n)=\sum_{d=1}^{n} 1
$$

Theorem (i) $\sum_{d \mid n} \phi(d)=n$
(ii) $\frac{\phi(n)}{n}=\sum_{d \mid n} \frac{\mu(d)}{d}$
(iii) $\phi(n)$ is multiplicative.
(iv) $\frac{\phi(n)}{n}=\prod_{p \mid n}\left(1-\frac{1}{p}\right)$

Proof (i) Consider the set $1,2, \ldots n$ and divide into classes C_{d} where $r \in$ $C_{d} \Leftrightarrow(r, n)=d . C_{d}$ is empty unless $D \mid n$.
Suppose $D \mid n$ then C_{d} consists of those r among $1,2 \ldots n$ for which $(r, n)=d$.
Write $r=d r^{\prime} n=d n^{\prime}\left(r^{\prime}, n^{\prime}\right)=1$
C_{d} consists of those r^{\prime} among $1,2, \ldots \frac{n}{d}$ such that $\left(r^{\prime}, \frac{n}{d}\right)=1$ therefore C_{d} contains exactly $\phi\left(\frac{n}{d}\right)$ elements. Therefore

$$
\sum_{d \mid n} \phi(d)=\sum_{d \mid n} \phi\left(\frac{n}{d}\right)=n
$$

(ii) $n=\sum_{d \mid n} \phi(d)$ therefore $\phi(n)=\sum_{d \mid n} \mu(d) \frac{n}{d}$ therefore $\frac{\phi(n)}{n}=\sum_{d \mid n} \frac{\mu(d)}{d}$.
(iii) $\mu(d)$ is multiplicative and d is multiplicative, therefore $\frac{\mu(d)}{d}$ is multiplicative, therefore $\frac{\phi(n)}{n}$ is multiplicative,
n is multiplicative therefore $\phi(n)$ is multiplicative.
(iv) $\phi(1)=1$

$$
\begin{gathered}
\frac{\phi(n)}{n}=\sum_{d \mid p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}} \frac{\mu(d)}{d}=\sum_{d \mid p_{1}^{\alpha_{1}}} \frac{\mu(d)}{d} \ldots \sum_{d \mid p_{r}^{\alpha_{r}}} \frac{\mu(d)}{d} \\
\sum_{d \mid p_{1}^{\alpha_{1}}} \frac{\mu(d)}{d}=\left(1-\frac{1}{p_{1}}\right)
\end{gathered}
$$

Therefore

$$
\phi(n)=n \prod_{p \mid n} 1-\frac{1}{p}
$$

The Zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}
$$

Theorem

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

Proof $\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}$

$$
\begin{aligned}
& =\left(1+\frac{1}{2^{s}}+\frac{1}{\left(2^{2}\right)^{s}}+\ldots\right)\left(1+\frac{1}{3^{s}}+\frac{1}{\left(3^{2}\right)^{s}}+\ldots\right) \ldots\left(1+\frac{1}{p^{s}}+\frac{1}{\left(p^{2}\right)^{s}}+\ldots\right) \\
& =\sum_{n=1}^{\infty} n^{-s}
\end{aligned}
$$

$\zeta(s)$ is a special case of a Dirichlet series $\sum c_{n} c^{-s}$
We have the following useful result concerning product of Dirichlet series.

$$
\sum_{u=1}^{\infty} a_{u} u^{-s} \sum_{v=1}^{\infty} b_{v} v^{-s}=\sum_{n=1}^{\infty} c_{n} c^{-s}
$$

where $c_{n}=\sum_{u, v u v=n} a_{u} b_{v}=\sum_{u \mid n} a_{n} b_{\frac{n}{u}}$
In particular

$$
\zeta(s) \sum_{u=1}^{\infty} a_{u} u^{-s}=\sum_{n=1}^{\infty} c_{n}^{\prime} n^{-s}
$$

where $c_{n}^{\prime}=\sum_{u \mid n} a_{u}$
Theorem $\mu(n)$ is the coefficient of n^{-s} in $\frac{1}{\zeta(s)}$
$d(n)$ is the coefficient of n^{-s} in $\zeta^{2}(s)$
$\sigma(n)$ is the coefficient of n^{-s} in $\zeta(s) \zeta(s-1)$
$\phi(n)$ is the coefficient of n^{-s} in $\frac{\zeta(s-1)}{\zeta(s)}$

Proof

$$
\begin{aligned}
& \zeta(s) \sum_{n=1}^{\infty} \mu(n) n^{-s}=\sum_{n=1}^{\infty} c_{n}^{\prime} n^{-s} \\
& c_{n}^{\prime}=\sum_{d \mid n} \mu(d)= \begin{cases}1 & n=1 \\
0 & n>1\end{cases}
\end{aligned}
$$

Therefore

$$
\zeta(s) \sum_{n=1}^{\infty} \mu(n) u^{-s}=1
$$

These calculations are only formal, and we must verify them in some other way.

$$
\begin{aligned}
\frac{1}{\zeta(s)} & =\prod\left(1-\frac{1}{p^{s}}\right) \\
& =\left(1-\frac{1}{2^{s}}\right)\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{5^{s}}\right) \cdots \\
& =\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
\end{aligned}
$$

$\zeta(s) \zeta(s-1)=\sum_{n=1}^{\infty} c_{n}^{\prime} n^{-s}, \quad c_{n}^{\prime}=\sum_{d \mid n} d=\sigma(n)$
The others are proved in similar ways.
Now consider $\sum_{n=1}^{\infty} \sigma(n) n^{-s}=\zeta(s) \zeta(s-1)$.
Multiply by $\frac{1}{\zeta(s)}$

$$
\sum_{n=1}^{\infty} \sum_{d \mid n}\left(\mu(d) \sigma\left(\frac{n}{d}\right)\right) n^{-s}=\zeta(s-1)=\sum_{n=1}^{\infty} n n^{-s}
$$

Therefore

$$
\sum_{d \mid n} \mu(d) \sigma\left(\frac{n}{d}\right)=n
$$

This correspond to a Möebius inversion, and whilst the calculations are onlt formal, they are useful to discover relations between the various arithmetic functions.

Example Let $Q(x)=$ the number of squarefree numbers not exceeding x.

$$
Q(x)=\sum_{n \leq x}|\mu(n)|
$$

Now

$$
\begin{aligned}
\sum n=1^{\infty}|\mu(n)| n^{-s} & =\left(1+\frac{1}{2^{s}}\right)\left(1+\frac{1}{3^{s}}\right)\left(1+\frac{1}{5^{s}}\right) \ldots \\
& =\prod_{p}\left(1+\frac{1}{p^{s}}\right) \\
& =\frac{\prod\left(1-\frac{1}{p^{s}}\right)^{-1}}{\prod\left(1-\frac{1}{\left(p^{2}\right)^{s}}\right)^{-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\zeta(s)}{\zeta(2 s)} \\
& =\sum_{a=1}^{\infty} a^{-s} \sum_{b=1}^{\infty} \mu(b) b^{-2 s} \\
& =\sum_{n=1}^{\infty}\left(\sum_{a, b a b^{2}=n} \mu(b)\right) n^{-s} \\
& =\sum_{n=1}^{\infty}\left(\sum_{b^{2} \mid n} \mu(b)\right) n^{-s}
\end{aligned}
$$

Equating coefficients
$|\mu(n)|=\sum_{b b^{2} \mid n} \mu(b)$.
The calculations are only formal and so we must prove this relation.
Suppose k^{2} is the largest square divisor of $n, n=n^{\prime} k^{2}$ where n^{\prime} is squarefree then
$\sum_{b b^{2} \mid n} \mu(b)=\sum_{b b \mid k} \mu(b)=\begin{array}{ll}1 & \text { if } k=1 \\ 0 & \text { otherwise }\end{array}$
$k=1 \Leftrightarrow n$ is squarefree. So

$$
\begin{aligned}
Q(x) & =\sum_{a, b a b^{2} \leq x} \mu(b) \\
& =\sum_{b \leq x^{\frac{1}{2}}} \mu(b) \sum_{a \leq \frac{x}{b^{2}}} 1 \\
& =\sum_{b \leq x^{\frac{1}{2}}} \mu(b)\left[\frac{x}{b^{2}}\right] \\
& =x \sum_{b \leq x^{\frac{1}{2}}} \frac{\mu(b)}{b^{2}}+O\left(x^{\frac{1}{2}}\right)
\end{aligned}
$$

Now

$$
\left|\sum_{b>x^{\frac{1}{2}}} \frac{\mu(b)}{b^{2}}\right| \leq \sum_{b \geq x^{\frac{1}{2}}} \frac{1}{b^{2}} \leq \int_{x^{\frac{1}{2}}-1}^{\infty} \frac{d t}{t^{2}}=O\left(x^{-\frac{1}{2}}\right.
$$

Therefore $Q(x)=x \sum_{b=1}^{\infty} \frac{\mu(b)}{b^{2}}+O\left(x^{\frac{1}{2}}\right)$
$\sum \frac{\mu(b)}{b^{2}}=\frac{1}{\zeta(2)}$
$\zeta(2)=\sum \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
Therefore $Q(x)=\frac{6}{\pi^{2}} x+O\left(x^{\frac{1}{2}}\right)$
Every large integer can be represented as the sum of two squarefree numbers.

Example on Möebius inversion Pick a, b at random. What is the probability that $(a, b)=1$? Define $N(x)=\begin{aligned} & 1 \leq a \leq x \\ & 1 \leq b \leq x\end{aligned}(a, b)=1$
Total number of point $=[x]^{2}$
Probability $=\lim _{x \rightarrow \infty} \frac{N(x)}{[x]^{2}}$
Divide the points $(a, b), 1 \leq a \leq x 1 \leq b \leq x$ into classes C_{n} where $(a, b) \in C_{n} \Leftrightarrow(a, b)=n$
Each point goes into just one class therefore $[x]^{2}=\sum_{n \leq x}\left|c_{n}\right|$
Write $a=n a^{\prime} b=n b^{\prime}$ then $1 \leq a^{\prime} \leq \frac{x}{n} 1 \leq b^{\prime} \leq \frac{x}{n}\left(a^{\prime}, b^{\prime}\right)=1$
Therefore $\left|C_{n}\right|=N\left(\frac{x}{n}\right)$
Therefore $[x]^{2}=\sum_{n \leq x} N\left(\frac{x}{n}\right)$
Using the Möebius inversion formula we get

$$
\begin{aligned}
N(x) & =\sum_{n \leq x} \mu(n)\left[\frac{x}{n}\right]^{2} \\
{\left[\frac{x}{n}\right]^{2} } & =\left(\frac{x}{n}+O(1)\right)^{2}=\frac{x^{2}}{n^{2}}+O\left(\frac{x}{n}\right)+O(1)
\end{aligned}
$$

Therefore $N(x)=x^{2} \sum_{n \leq x} \frac{\mu(n)}{n^{2}}+O\left(x \sum_{n \leq x} \frac{1}{n}\right.$
$=x^{2} \sum_{n \leq x} \frac{\mu(n)}{n^{2}}+O(x \log x)$
$=x^{2} \frac{6}{\pi^{2}}+O(x \log x)$
Therefore $\lim _{x \rightarrow \infty} \frac{N(x)}{[x]^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{6}{\pi^{2}} x^{2}+O(x \log x)}{x^{2}}$

$$
=\frac{6}{\pi^{2}}
$$

